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— -3 Many of the diff iculties associatel with previous geometric representations
are overcome with the construction of a new coordinate system which is
especially tailored to the numerical simulation of viscous flows through
a casci de of airfoils. The system consists of coordinate loops surrounding
the airfoil and radial coordinate lines normal to the airfoil surface. The( outermost loop is constructed so that the cascade periodicity conditions can
be applied without interpolation between grid points. The coordinates are
orthogonal on the airfoil surface but gradually become nonorthogonal away

\ .,~~om the airfoi],/~Large gradients in the viscous shear layers are adequatel~,
resolved with a simple coordinate distribution function along the outward
normal direction from the airfoil. An essential ingredient in the genera-
tion of the cascade coordinates is the conversion of discrete curve-like data
into analytically def ined curves which accurately reflect the overall
geometry. For this purpose a least squares spline procedure is employed .
The coordinate generation procedure accepts discrete input dat a representing
th~’ airfoil surface , places little restriction on the airfoil camber or
sp~cing and is eas ily extended to three dimension s~~ The coordinate system
is thus more general end in many cases comput ation~\ly less complex than
systems derived from conformal transformations.
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I . INTRODUCTION

An important problem which must be faced by the designer of advanced gas turbine
engines is the prediction of the flow field In and around turbine and compressor blade
passages. An accurate estimate of the flow field is required to predict the heat
transfer rqtes and aerodynamic losses both of which may be critical to successful
engine operation . In advanced engines , it is expected that turbine and compressor
blade passages may contain transonic flow and in these more complex transonic flow
~~qr~~5 , techniques for predicting heat transfer rates and aerodynamic losses in the
transonic regime would provide a valuable tool in the engine design process. In
thi s regard poor estimates of either loss coefficients or heat transfer may result
in poor predictions of engine performance or catastrophic failure of the engine
components. For example, exc essive heat transf er rates as sociated with boundary
layer separ~tion and reattachinent on turbine blades and end walls can have damaging
effect ~- as the resulting hot spot~- may result in structural failure. In addition ,
excess a - rody-n amic losses associated with viscous effect s may result in a serious
deterioration of component efficiency. Since aerodynamic losses and heat transfer
rates are associated with the viscous nature of the fluid , the ability to predict
the viscous flow in high performance turbine and compressor blade passages becomes
mite import ant to the successful design proces- . Most. presrni-ly available analyses
of the blade passage flow field have been based upon solut - ons of the  inviscid
equation s and then corrected for viscous effects through empirical -lata correlations.

~bvious1y, methods which complet ely neglect viscous -ff ~ c1-, s  or m~t ,hois which
include viscous effects through empirical corrections are i nherently limit ed. Other
more rigorous studies obtain an inviscid flow field and then input, the blade pressure
-li stribution into a boundary layer procedure to calculate the viscou s boundary layer
in the imediat e v i cin i t y  of the blade . When the boundary layer r emain s  small through-
out the entire blade passage, such a boundary la:ier correction may give an adequate
1e~cript ion of the flow even when viscous displacement effect s upon the inviscid
flow are neglected . However , severe pressure gradients and shock waves can cause
boundary layers to thicken or become separated and in such a situation the boundary
layer di splacement effects are expected to exert a significant influence on the
nominally inviscid flow field. When viscous- displacement ‘~ff -ct s do alt er the
nomthally invircid flow field significantly , it is necessary for the c-lculation
procedure to r~cogn~se the mutual dependence between the viscou s and inviscid flows
either through a strong-interaction analysi s between a viscous boundary layer
solution and ~n inviscirl outer flow field solution or through a full Navier-Stokes
solution i n  the ent ire  region of interest . In regard to strong Interaction analyses ,
if  the inviscid flow is supersonic and if a t.rue inviscid core is present in the
blade passage  flow f i e ld , the governing inv i sc i d  equation s ire hyperbolic in nature ,
and the int eraction analysis can be solved with a fo~ zard-marching procedure in
which i nvi scid and viscou s regions are coupled implicitly . However , thi s interaction
formulation to a supersonic problem yields a stiff system of partial differential
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equations which may be difficult to analyze numerically. If the inviscid flow is
subsonic , the equations governing the inviscid flow field are elliptic and hence
cannot be solved by a forward-marching procedure in space. In this case a sequence
of invi scid and boundary layer solutions must be performed so that each corrects
i t s  predecessor unti l  a desired stage of convergence is obtained through a global
i terat ion . In any case, the strong-interaction analysis presents serious difficulties,
particularly, in interacting the viscous and inviscid solutions around the airfoils
which form the blade pa ssag e or in calculat ing sub stantial regions of separated flow.
Finally, the interaction approach is not even valid for flow s in which the viscous
r-~-ion .rcomp .esres most of the flow field since, in this case, no nominally inviscid
flow region exi st s.

flue to the limitations and difficulties associated with strong-interaction
analyses , particularly in transonic flow with its extreme sensitivity to cross
s’-c~ ional area, a computation-al method based upon solving the time-dependent Navier-
tok -f ‘iua 4-ion: in the entire flow regime would be a favored alternative solution

procedure for the viscous blade passage problem. In a Navier-~t.okes solution,
boundary layer separation and reattachment would evolve naturally with the advan-
4.ageou r use of the s-use basic numerical analysis for viscous and inviscid regions.
In a flition , a solution based upon the Navier—Stoker equations  would handle shock
wave-boundary layer interactions in a natural manner . Solution of the Navier-Stokes
equations , however , first requires a coordinate system appropriate for the geometry
an~i toundary conditions of interest . A coordinate system especially tailored for
the geometry and periodicity requirements of airfoil cascades is developed and
pre r~ e-~ herein .

2
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II. BACKGROUND

A computer code capable of accurately predicting transonic flow through a
blade passage obviously would have a significant positive impact upon the gas tur-
bine design process as it would aid greatly in obtaining accurate predictions of
blade heat transfer and aerodynamic losses . To date most. transonic analyses have
concentrated upon inviscid solutions of the isolated airfoil problem ; a recent
review of inviscid isolated airfoil transonic flow analyses has been presented by
Yoshihara (Ref. 1). In contrast several inviscid analyses have been developed
specifically for the cascade problem. These cascade analyses include the transonic
procedures of Delaney and Kavanagh (Ref. 2) and Gopalakrishnan and Bozzola (Ref. 3)
among others. Although these inviscid flow analyses can serve to predict certain
features of the passage flow , their inviscid assumptions lead to several major
lirnitat ions.

:he s~a t r  l imitat ions which evolve from an inviscid, flow analysis concern
application of the  K u t t a  condit ion , neglec t of v iscous phe nomena , prediction of
rhock locat ion and predictions of the trailing edge base pressure. Considering
first the ~utta condition problem , if the flow field is assumed inviscid , only the

rr~al velocity at the airfoil surface is set to be zero; no restr~ction is placed
upon the tangential velocity. In this situation , the oncoming flow impinges upon
the leadino edge region cf the airfoil and somewhere in this region a leading edge
ctagna~ion point appears. ihe inviscid flow divides at the stagnation point as
some of the flow (that which is above the stagnation streamline) proceeds along
the upper surface of the airfoil and the remainder of the flow (that below the
cta~cnation streamline) proceeds along the lower surface. Since the flow is invis-
cid , there is no restriction on the tangential velocity along either surface. This
slip velocity presents no problem until the trailing edge is reached. At the
trailiru~ edge , the flow along the upper surface rejoins that along the lower sur-
face ani parses ir~to the wake ; however , there is no guarantee that when the upper
s’~rface an~ lower surface flows join at the trailing edce 

4 hey will both have
ider ical tan~-ent ial velocities. In general , the tangent ial velocities predicted
t~:; an u ivir c li o-’or” will be different and an unrealistic velocit y discontinuity
will r~’s 1lt fr rs an inviscid analysis in the wake. The usual method by which this
unreali,”ic behavior is suppressed is through the application of a Kutta condition
in wh i -h ~~ airfoil circulation is specified which either makes the airfoil trailing
edge a : a;na ion poin~ or which causes an identical nonzero tangential velocity to
appear in both the upper and lower stream at the trailing edge. While the proper
specificat ion of the Kutta condition is both reasonable and straightforward for
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inviscid flow is calculated ignoring any displacement effects of the blade boundary
layer and then a boundary layer calcülat ion is made under the influence of the
inviscid pressure distribution. Under severe pressure gradient s or at low or
moderate Reynolds numbers the boundary layer can thicken or become separated and in
such cases the nominally invisc id flow f ield calculated in the absence of any
viscous effects is considerably different from that which is actually present. In
the presence of such viscous displacement effects an accurate calculation procedure
must recognize the mutual dependence between the viscous and nominally inviscid
flow either through a strong interaction analysis (e.g., Erdos , Baronti, and
Elzweig; Ref. 8) or a full Navier-Stokes solution in the entire region of interest.

A strong interaction analysis may take the form of either a forward marching
procedure or a global iteration. For regions where the inviscid flow is supersonic
and thus described by hyperbolic equations, a solut ion can be marched with the
inviscid and viscous regions coupled on a station by station basis. The chief
difficulty in this process is that stiff equations must be solved. Common problems
with stiff equations show up in the form of numerical solutions which can quickly
branch off the desired solution thus producing a physically unrealistic result. In
regions ‘where the inviscid flow is subsonic and thus described by elliptic equations,
a forward-marching procedure is impossible and consequently a sequence of inviscid
and boundary layer solutions must be performed in a manner where each stage corrects
the former one through a global iteration. Although transonic inviscid analyses of
cascades could be extended by incorporation into a strong-interaction calculation,
implementat ion of the strong-interaction analysis is difficult; and for the tran-
sonic cascades of interest the strong-interaction analysis is not expected to be
more economical than a full Navier-Stokes solution. Furthermore, the interaction
analysis is invalid for flows which are aLnost entirely viscous ; in such flows no
inviscid core exis~s and under these circumstances where no inviscid core exists a
reliable solution must he based upon the Navier-~tokes equations. Finally, if an
i:.~erac~ ion procedure is to be used , the viscous layer is solved by a forward
marching t oundary layer calculation procedure . In the case of steady state boundary
layer procedures , problems will be encountered when the boundary layer is subjected
to a s’rong enough adverse pressure gradient to cause separation. Although a
boundary layer procedure can be marched through separation by the usual method of
suppressing streamwise convection terms in the separated region (e.g. Ref. 9) the
res d~ irig colution is based upon an approximation made in the separated flow region
and calculated details of the flow in this region must be viewed with caution.

ince a stron~ interaction analysis may not he valid in certain cases of
int,eres’ die to the lack of’ any identifiable inviscid core and since an interaction
calcula~iori requires a time-consuming iteration , a computat ional method based on
solving the time-dependent Navier-~ tokes equations is an attractive alternative.
With a very compet itive computat ional speed a Navier-Stokes method would be directly
extendable to three dimensions and would correctly produce the viscous behavior.

.- - .. - - . - - .
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isolated airfoils at high Reynolds numbers , proper specification may not be obvious
in cascade s for either t ime-dependent or steady state flows . Any uncertainty in
the Kutta condition can be very detrimental to an inviscid flow calculation since
even modest modifications in the Kutt a condition can lead to significant modifica-
t ions in the generated potential flow . In contrast to the necessity of applying
a Kutta condition in inviscid flow, no such procedure is required in a viscous
flow calculation. The viscous flow calculation applies a no-slip boundar y condition
to the blade surf ace and , thus , no discontinuity develops . In a viscous flow solu-
t ion , no circulation is applied but rather the circulation emerges as part of the
viscous solut ion .

A second deficiency assoc iated with an inviscid solution concerns the neglect
of viscous phenomena. If viscous phenomena are neglected , aerodynamic losses can-
not be predicted ; and hence , engine performance cannot be reliably estimated. In
addition to this inability to predict aerodynamic loss, an inviscid solution cannot
predict wall heat transfer rates and, thus , an inviscid procedure cannot be used to
determine the location of hot spots such as may occur at a separated boundary layer
reattachment point and cannot predict the cooling required to maintain structural
integrit’~’. Obviously, accurate predictions of wall heating and aerodynamic losses
are critical ~~ a successful design. In addition , an inviscid calculation may not

t’:~r predicting the location of a trarisonic st ock. since in transonic

~‘L - w an invirn id calculation is extremely renr it ive to the et’fect~ve airfoil shape,
an i v i s o l u  Je t ui’s- nat ion of the shock b eat ion may he unreliable unless he
honud ar’.’ ~a’:er thickness is very small. When the physical boundary ia ,’er viscous
ii : ’pl ac”stent ‘t ’ t ’ec 4 s change the effective airfoil geometry, the inviscid placement
of sL ~cks na. ~~

- in considerable error . Finally , in the case of a blade with a
sionif i -

~~~ case region , inviscid solutions in general will be inadequate in pre-
die I:.: ft base pressure and thus will not correctly account for a significant
loss mechan

inheren t l imitat ion: of inviscid flow theory ,  many existing inviscid
t ransonic unat’:sec have been developed for both the isolated airfoil problem arid
‘ lie cascade prct lem. “hese include the cascade analyses of befs. 2 and 3 and the
isolated airfoil analyses presented in Ret’s. ~‘-7. All these procedures have met
with var:’in.~ degrees of success for a variety of problems but all are limited by the
aforementioned restrictions inherent in the inviscid assumption . In certain cases
these l init a t  ions could be relieved by coupling a boundary layer computation to the
inviscid flow anal:,’s is arid in all cases the limitions could be relieved by solving
the entix” fl o-. field with the Navier-~’tokes equa~ ions.

In ca:eo where the boundary layer is thin , the viscous displacement effects on
the nor inally iiiviccid flow field can often be neglected and then It is possible
tha ’ a suitabLe prediction of viscous effects may be obtained from simple boundary
layer t heory . ~uch an approach has been used to modify some inviscid procedures so
as tc include viscous effects (e.g., Korn and Garabedian). In those procedures the

.
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Implicit procedures studied by Briley and McDonald at UTRC have led to the
i( ’ve L~ pm~ : ’ -V a highly efficient tim e-dependent implicit Navier-Stokes computer

c d t  ~~~~. ct ~ 1 1  fo rm a basis for solving the blade pressure problem (Ref. 10).

Nay I r - ’ K S  solutions can be obtained either through a relaxation of the
•~~~ t~-:t a t e  av~.r- .~t okt.; equations or through application of the time-dependent

‘~avi ’ x’ -~~~~kes r’q iat i j tns  i ’ut iec ted to steady—state boundary conditions . In this
lat ei case , the time-dependent solution would progress to a steady-state and time-
s t p :  car be r - ~ ar ied as an iteration. Solution procedures for the time-dependent

ions may e pjt h~’r explicit or implicit. If the solution procedure is expli—
ci’ . ‘h e  max imum t ime_ step is governed by stringent stability l imits  (Ref. 11)
which  r ll ’~ e tb ;  maximum t ime-step to the size of the computational grid. If a
visco n:’ Layer is to L u adequately defined , a fine grid is required in the vicinity
of the lade surface and in such cases the stability limit would isake an explicit
calculat ion impractical. However , implicit methods are not s i t ject to such sta-
i l it ’,’ l i m i ts , rather ~tey are only limited by the physical t ime scale or the flow.

~Lus implicit solut ion procedurcs of the time-dependent Navier-Gtokes equation
represeri~ a reliable method of solution for the blade passage problem. In addition,
a ¶ is,e-uepender~t solution could be readily extended to investigate the time-dependent
blade passage problem.

A ‘ :T ica l  time st ep in the Pef. lO procedure consist s of a ~Lme—wise linearization
folLowe i by a t ’ ~ll1: implicit difference approximation which is solved by an ADI
(A l ’ ‘;rniu ’ inc ;  ~rection implicit) procedure of the bou~las-i;unn type (Ref. 12). The
advan aoc w i ’ L  API metsods is that a short sequence of simple matrix inversions
replace~ the c uplicated siat six inversion problem associated with a direct solution
of ‘to implici’ e l ,a’ions . In this way a real savings in computer time is made
without sacrificir~’ accuracy or stability. by experience the scheme has run
accuratel’,’ and sta L l ’:  w i ’i i  time steps that are about 100 to 1,000 ~imes the expli-
cit s~abi1jty limit. The ne t, result is a solution procedure that for certain
classes of pr Len. ; is several orders of magnitude faster than the well-known expli-
cit nethods such as ‘ hose LI’ Lax-Wendroff (Ref. 11) and MacCormack (Ref. 13). The
tJ~~ C c ’o5 ; r) u~ e1’ ~ ‘ )cie ‘~I~ T ( :ultidimensional , Implicit , r-~avier-ytokes , Time—dependent )
‘,o,ich is L a. : ed ~pon a t ime-dependent ADI solution of the wavier-Stokes equations ,
is a t . i~ t J y  modularized eff icient  program which has opt ions for two and three

i nal mode s of operation . This code could form a basis for the eff icient  and
a -ii’ a ’ e soL ~ t i o n t’ the t ransonic  viscous blade passage pr ot t em.  .Juch a solution
w~~ ld m c i  ide ‘u sc us e f t ” u t .  ~~, he extendable to three-dimen:;iural and time-dependent
pr: I r s  an: w ~1d t i ’ r’e lu i re  specification of a hu~ ta coroli t ion.

_ _  - 
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Ar:ru the numerical method of solution has been chosen , the numerical  solution
of practical viscous flow fields is a function of the basic geometry of the flow
region . i-or the overall numerical solution to be accurato rjn j efficien t , it is
import an t to obtain an iccurate representation of th e geometry which is efficiently
4 z c n e r a t e d . In most p rac t i cal  problems of importance t h e  flow region Is generally
rcr.~ rivial . Nontrivial geometries are usually t r e a t e d  by the  use of e i t h e r  a
t’ tri t e t l m c n t  method or by a transformation of coordinatrs . In the finite element
mt tho -i , the numerical solution and the geometric analysis  coin ”id ’ (Ref. 114).
Here small riati~ular or rectangular elements are used a cover ~l ’  er. ’ ire ’ flow
region : t hu s , f o r m i n g  a f i n i t e  element mesh.  The solu t ,ior :  p roc edu r e  r e su l t s  f rom
or. ir t egr a  ion over each mesh element . In two d imens ions  t i n  f i n i t e  element
a n al y s i s  h is  heen extended to include  elements wi th  00’; curved  s i de .  However ,
tht an’~lynis has  not been e ffe c t i v e l y  extended to th r ee  d i m e n s i o n s ;  -t~~- l in
ad i t i o n . t h e  ~v _ i i m e n s i o n a i  case is not completely a ’ieq r a t ”  fu r  t h e  ‘o ’ cur a t e

r e p r c s e n t - t t i o n  cf n o n t r i v i a l  ce ’ometries. The problem occurs with the coupl ing
of t h e  f in i t e  element intn ’r’r at .ion and i ts element bounda r i e s  w h i c h  may be cu rved .

~‘onse;u~n 4 ly the  manner in wh i ~~h curved sides of a pa i r  of f i n i t e  ele’-~er :ts are
T h i r : e~ is q u i t e  r e s t r i c t ed  if the following int eg ra t i on  is to l-~ s u f f i c i e n t l y
simple . ThE’ r es t r ic t ions  imposed by in tegra t ion  tend to cause a poor representa-
tior : of the geometric boundaries of the flow region. Here it is of prime impor-
t a r n u  to accurately represent the local curvature of the rue~iorr boundaries.
The iorn :ary cu rva tu re  can te accurately rendered if the boundary is fit without
tb ’  above restriction . From t hi s  point  of view , the use of a coordin a te  trans-
form~’ition is desirable. An additional attraction of a coordinate transformation
appr o -i . ‘h is that a regular ordering of the computation mesh is given for a problem
w i t h  cu r v e d  b oundar i es . The regular mesh order ing  is Important since th e matrix
‘tan-ic-I stnri’ ture in the solution procedure is by far less complex than the
t ’1TlCai structure which results from a direct use of the finite element method .
The use of ‘i coordinate transformation does not , h oweve r , rule out the possible
use of a finite element method since the regular mesh in  computational space can
be used in a f i n i t e  element solution of the t ransforme l equations .

For t i e  two- limensional airfoil or cascade of airfoils , the most, common
type of roortinate transformation is the conformal transformation. The theory
of r:-’ ’csipiex variable can be applied to oltain not only conformal coordinates
ru t also o potential flow solution to the inviscid equations. The arbitrary
airfoil , however , cannot be easily transformed via complex variables. Th e result
is usually a composition of several conformal transformations which is generally
complicated an’i time consuming. In addition , the potential flow solution is
of lit tle value in a study of the fully viscous flow field since the inviscid
streamlines , as noted above , are not very accurate. Consequently , the use of
a conf)r’mal t ransformation is not completely justified by the result of a potential
flow solution . A further problem with conformal transformations is that highly
carnbt’re I and/or tightly spaced airfoils are difficult to trans form into reason-
able coordinat ” curves . OVten the positions of coordinate curves are impractically
situated for a viscou s calculation. The best posi t ion s would be expected from a

7
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pote n t ia l  flow solu t ion  w h i c h  can be obtained by th e specification of a suitable
source an-I s ink , l u ~ th ri s t ai rna t ion  points  occur at leading and trailing edges .
the resultant coordinate s i n g u l a r i t i e s  tend to cau se  d i f f icu l t  numerical problems .
Such pro bl em s can be c mi” I by a tar - l on ing  t h e  potential flow solut ion ,  in attempt-

+ o b t - t i n  a suit-tile coordinate transformation. It is possible to corn’i’ler
t l t e r n t i ’ ’ cont ’ stool mappin g  t r a n s f o r m a t ions not l a s er l  upon potent ia l  flow solun ions .

i r,for’4ur;a f ely the coordinate curves in such roses t~ n h  to ha ’,’~ a spurious behavior.
For ‘~:ampie , on ’ may oht ’i in cascade coordi nates with coordinat e curves t , h t i t~ connect,
n p-ta’s ~i nd lower surfoc’ s of the airfoil with s_s1u~api’ 1 curve s t l a ~ p t t s s  around and
ov”r ei fli er Tie leading or trailing edges. A final drow ta’ k ~o 11 us° of
con f or m a l  t r ansformat ions  is that  a s t r a igh t fo rward  extens ion  to three dimensions

rio 4 xist. To date there has l eon no applicaL le fure ’t ion theory as in the
t w o -  Umeru~i ‘ri -il case w t t h  complex vari~ib l t ’s .  As a r e s u l t  t,t. ~’ mos comori metho d

f ‘car iina te  cons t ruc tion is to use a 5et  of parallel plane :-’ each w i t h  a con formal
tran:V stration of the airfoil (or cascade) contours, (Jameson Ref. 15). As a
f u r t h er result, these nonorthogonal coordinates require a great amount of labor.
In addition , the resulting coordinates are not orthogonal at the airfoil surface
where large viscous gradients exist and must be suitably resolv ’~ I .

All of the above problems are readily overcome wi th  t i e  cascade coordinate
sys t ems developed here . The coordinates  are easily generate I and wel l -pos i t ioned
for  t h e  nui m - rical study of a viscou s flow f ie ld . The coo r i i n’it e s  are nonorthogonal
b i t  t h is nor~ortho~ noality is control led.  Specifically, the coordinates are
o t t h o ’ s n a l  on the a i r fo i l  sur fac e and eradually depar t from orthogorial i t y as the
fr  s t ream regions are approached . Thus essen t ia l ly  orthoo or :- l coordina tes  are
used i n  t h e  regions where  large gradients  appear in the so lu t ion .  As orthogonali t y
Ie t e r i o r a t e s  the solution gra d ien t s  become smaller ; and hen ce , the p roj ec t ions

b - et w e e r ,  computa t iona l  d i rec t ions  do not cause any s i g n i f i c a n t  e r rors  in the
nu m e r ic a l  so lu t ion . The nonorthogonali ty does cause the equ at i o n s  of motion to

‘ - i ’ am mar ’ t e r m s , but th is  is sore than compensated for by the simple cons t ruc t ive
nature of the et i s ca le  coordinates  which result, in an a lgor i th m that is considerably
f a s t ’t r  ti ar: a cu r r e s p o n h i n g  conformal  t ransformat ion . Ti :’ only real time consuming
p u n ’ j~ tF~ “neration of an accurate surface representation wh ich renders not
only a good approximation to airfoil coordinate locations hut t lso to the important
airfoil curvature . A lesser demand on the accuracy of the sur’f’ice representation
would yiol~i a fast.er algorithm ; however , the accuracy of the final solutions would
h e t e r i o r a ’ n’ . In addition , the cascade coordinate system preser tt’rI herein allows

a more f l e x i b l e  ‘h i s t r i b u t i o n  of mesh points than does ri confo rmal approach , and

~ S easily ext.en ’I”i to the three—dimensional case.

- 
, - ‘ ~~~
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III . A COORDINAT E SYSTEM FOR CASCADE GEOME~TRIES

Overview

r t. a computational model of the viscous flow field t rough a cascade of airfoils
is ever to become an effective design tool, then the resultant computer code must
1 e of suff icient  generality to accurately and efficiently produce physically reason-
able solutions to a wide variety of cascade problems. To obtain the necessary generality
usemust bemad e of a coordinate system in whichthe cascade geometry is specified by a
suf:’ic ~ently dense discrete set of points. Ideally one may easily envision the
lesign i engineer who would enter his geometric data directly from his blueprints of
an al rt’c’il contour. In addition, otnier parameters must exist to allow the coordi-
nates to be arbitrar~ l,y st retch ed in upstrearnr ‘i,n ’l downst ream directions so that
free stream ‘on iiti.on s can be well approximated . Also roes distributions must be
easily speci f i e i  to adequately resolve regions wh ere large gradients are to be
expe’ tel , sucu as in th e boundary layers and at leading and trailing edges.

The consi lerations indicated above have been well accounted for in the development
of the cascade coordinates presented herein. The required input information consists
of toe geometric data points, the downstream-upstream extensions , the periodic
spac in~ of airfo ils, and the mesh point distribution . The periodic alignment of
trne cascade determines a vertical direction . The geometric data for the airfoil
contour is ten accepted in the form of a sequence of vertical slices of the airfoil.
In properly aligned cartesian coordinates (x,y) each vertical slice consists of an
x-coordinatewhich determines averticalline x = x~, and twoy-coordinates y = y~ and
y z1 to denotethe y valueswhere the vertical linex=x j, intersects the airfoil. (See
Fig .  1) .

It will be assumed tr at the distribution and quantity of vertical slices is
enough to adequately specIfy the airfoil contour to a viewer who exa~nthes the air-
nI l as a wuole from a reasonable distance. From a close up distance where only
a small part of the airfoil is examined, the viewer would probably notic e the
o’currence of small fluctuations in the data caused by inaccuracies in measur~~ent
of th is data. These inaccuracies will always occur when t’e data is taken directly
from a. grapfn of tIe airfoil contour. Data fluctuations of this t~rpe present no
problem, to to e curve fitting procedures that are used here . The curve fitting will
always l i e  lone with a parametric least- squares spline which will effectively filter
out ti -ne unwanted no i sy fluctuations in the data. The result is a smooth curve which
aceuratel~y reflects the local curvature and the global shape of the given contour
from which the discrete data were taken . In the development presented herein , it
will be acinnned that a least- squares spline rout ine is always available to convert
discrete descriptions of curves into smooth and different iable representations of
the same curves.

Coordinate extensions in the upstream and downstream directions are specified by
two input lengths which measure the distance of extensions, respectively, in front
of and in back of the airfoil. The angles of the extensions are either input as
parameters or are automatically made by the coordinat e generation process. Thus

— 

‘ 
, 
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a user not only has the option to stretch his intended computat ional domain to
obtain reasonable approximations of the far field regions of the flow; but also,
he has tine option to align the extensions with the flow direction into and out of’
the cascade. This will be seen to have the important property of concent rating the
mesh points along the leading and trailing edges of the airfoil in an opt ima].
fash ion . An additional option on the distribution of mesh points is the cont rol
over the density of mesh points near the airfoil boundary. Tie user merely specifies
a pre l i -tel boundary layer thickness and the fract ion of mesh points that are
lesired to resolve the boundary layer. If desired , the predicted boundary layer
t : i k i n e s s  can easily be made a function of time by an updating process from the
‘orevious t~ noe levels in a solution procedure . The simplicity of t his process will
1e ev i i  erot from the modular way that this distribution enters into the coordinate
‘onot r~n ’t  ron . The remaining information that must be specified is the number of
eoisputational mesh points which are to be distributed around the outer boundary of
the comput’~tional region. This number is broken down into three parts. Specifically , one
isust specify half the number of periodically aligned points, the number of points for the
in ~ low boundary , and the number of points for the out flow boundary.

With the above input a system of coordinates is generated in a manner which is
a generalizat ion of both polar coordinates and the classical boundary layer
coordinates (Ref. 16, pg 312). The circles in polar coordinates are now replaced
by a family of loops about the airfoil which start with the airfoil itself and
smoothly deform into the outer boundary of the computational region. The polar
radii are replaced by straight lines which emanate from the airfoil surface and end
on t h e  outer boundary. As in boundary layer coord inates , the straight lines are
taken to be orthogonal to the airfoil surface. However, since the intermediate
loops are chosen by an interpolation between the airfoil surface and tine outer loop
the resultant system of coordinates is generally nonorthogonal. The nonorthogonality
of t :.e coo rdinate system as a whole is of no great concern since the coord inates
are nearly orthogonal in the regions where the viscous flow is undergoing its greatest
i-ate of change . Specifically, the coordinates, by construction , are precisely

StOO C)flS.1 along the airfoil surface and gradually deviat e from orthogonality as
one leaves the airfoil surface. The greatest degree of nonorthog,onality occurs in
the ur : r t r e :u r .  and downstream regions where free stream conditions are being approached ;
ani w ere , therefore, the gradients in the viscous flow field are very small. If
the outer loop could be taken as a uniform expansion of the airfoil along its
outward normal lines, then the resultant coordinate system wouldbe precisely a set of
boundary layer coordinates for the airfoil and accordingly would be orthogonal everywhere
(Fig. 2). If an addition , the airfoil contour is a circle, then the coordinate
system becomes a set of polar coordinates. ~iince the coordinate system has been
constructed for a cascade of airfoils, the outer loop generally cannot be taken as
an outward and uniform expansion of the airfoil itself (as in Fig. 2). Instead the
outer loop must be generated from a curve which can conveniently be used for the
application of the necessary periodicity conditions in the cascade problem. The
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basic shape of this curve should be reasonably close to the camber of the airfoil.
Hopefully , without too much confusion, it will be referred to as a camber curve .
The generation of the camber curve is acccmiplished on a discret e level within the
airfoil contour and is extended by lines outside of the airfoil. The discret e data
can be conveniently generated by averaging the y-values Yj,  z~ of each vertical
slice x - : x~ in the discrete specification of the airfoil contour (dep icted in Fig .
1). The discrete data is made into a different iable curve which is extended by
lines in front of and in back of the airfoil. Within the airfoil the camber curve
is an approximation to tine real camber line of the airfoil.  The main distinction
between these curves is that the real camber line is generated by averaging airfoil
lata along lines which are orthogonal to itself as opposed to the camber curve

1 .ere whiH Is generated by averages along the verticals . The camber curve thus
a: t i e  at;antrn.ge of a simple specification . The camber curve is shown in Fig . 3
as line A-B . After a smooth camber curve is created , the domain of the calculat ion
is 1 nun Ici by two curves each parallel to the camber curve . One curve , line C-D ,
is above the airfoil and the second curve , line E-F, is below the airfoil. The

‘urve ,; are separated by a distance equal to the airfoil spac ing and are capped
off at upstream and downstream ends by curves which are smoothly joined to form
the differentiable outer ioop depicted by CDFE in Fig. 3. The outer loop is then
reparameterized in a manner which yields a periodic alignment for the mesh points
where a periodicity condition must be applied . The next step is to impose the
parameterization of the outer loop upon the inner loop by dropping normals onto the
airfcil surface. The reparazneterization is accomplished by the assignment of the
parameter value of each outer loop point to the point on the airfoil contour which
has an airfoil normal line passing through the given outer ioop point. This is
computationa.lly executed on a discrete level and then made into a smooth curve by
the least-squares splin e rout ine . The inner ioop with the imposed parameteriza-
tion from t i r e  outer loop is now properly aligned so that any line joining inner
and outer ioop points of the same parametric value result s in a line that leaves
tie airfoil as a normal line. The normal lines form the family of the coordinate
‘urves whirl correspond to the radii of a polar system. These are illustrated in
Fig. 3. TIne other coordinate curves consist of the loops that are obtained b:r an
interpolation along the above normal lines. The periodic alignment of the result -
in; coordinate system is illustrated by the line GH which is represented by a dashed
line since it is not a coordinate curve .

The Effect of Airfoil Curvature on the Placement
of a Lower Coordinate Boundary

The const ruction of the cascade coordinate as outlined above will now be discussed
in r ’,ore detail. The necessary input data will be assumed to exist . The input
data basically consists of a discret e rendition of the airfoil geometry by vertical
slices, specified extensions of the computational domain upstream and downstream of
the cascade, and the desired mesh point distributions for the flow field calculation .

11
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As a first step the discrete airfoil data is converted into a smooth curve by
an application of the least-squares spline algorithm. The curve parameterization
is obtained from the cumulative arc ler.gth between data points. The result is an
accurate fit to data with an (almost) arc length parameterized curve ~ (t) = (y ’ ( t ) ,
-y’~~(t ’)  w h i r i n  has at least two cont inuous derivatives and accurately reflects the
curvature of the cont our from which the raw data was taken. The two continuous
cier .: vative: are needed to perfo rm the calculation of the curvature which is given
by the formula

1L ~ ~~~
‘“ y’ — (1)

where .‘ is the actual analytic arc length alcug the curve, = ~~~~ :~
:~ur~rration ‘-onvention o~ surming like indices has been invoked with ~~~~

ç ç + , etc , ~
‘
°‘ 1~

m i 1t, and ~m 
= dc~~

m/dt 2 . The analytic arc length , 5, and
the solygonal arc length , t , are nearly equal since t is an approximation of 5.
Thus .~

‘ 
~
- 1, ~ ~ ~), and as a result K 

~~
- .J ~~~~~~~ The curvature here is needed to

determine the extent of the computational boundary below the airfoil. Since the
bottom side of the airfoil is usually concave it is clear that there is a restric-
tion on the distance that the coordinates can extend below the airfoil. Otherwise,
the proposed coordinate normal lines would have intersections among themselves
when tine domain is stretched beyond a certain point. This would cause coordinat e
sin~ ilarities at such points. An illustration of this singularity is given in Fig. ~~.

To prevent the appearance of singularities due to intersecting normal lines, the
cascade coordinates must be restricted in the region below the airfoil to lie above
all points of possible intersections. The restriction is analytically specified
by a knowledge of the centers of the oscillating spheres along tine concave side of
the aIrfoil. The osculating sphere in two dimensions is the circle which is tangent
to tine ai rfoil bottom and is determined by matching its derivative :; with the airfoil
surface until all of the parameters of the circl e are determined . The result is a
c rrle of radius 1/K which is tangent to the airfoil bottom. The center is located
at a distance of 1/K along the airfoil unit normal vector r~ which is given by

..Jn .  .m ..
A \i — ‘~ A

U (2)

where and ~~~~, are the standard cartesian unit vectors along the x and y axes
respectively . Thus , the vector position of the center is given by the quantity

A

(
~~

)
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which will tra ’e out a “urv~’ below the airfoil as the concave part of the airfoil
bottom is traversed . To obtain a well-defined coordinat e :;y::ten tine coordinates
must te~~cin a te within tine r~~ ion bounded below by this curie an’l above by the
airfnil bottom . For an illustration, see ~ig. 5.

in tb ‘~~ ure , tine ~‘urv e d etermined by the center:; of the osculating sp lneres
is given ‘ny  tine dotted curve, the lower boundary of’ a well-~ ’ f 1 rno~ roo r ’uinat e
:;y:ten 1:; g iven by the (lashed curve , and one of the osculat ni , - sphere:; is Il :;playe’l
a: a ,;c’li’l curve. The curve which must be properly pos t : one i below t ine  ~i f  r f’oIl
is ti ne c’u rve w i n i c l i  I : ;  parallel to the camber curve and wh i ch w i l  be rc ’;e ’I ~~~

the bottom of the coordinate system. This curve is cho sern I ’e ’ause it is i ent In
rouj~hly the same manner as the airfoil. A good rest n t  on on t i . ’  v~~rt i ‘al j o~~~~’r-

ing of t i r e  camber curve is to lower it by a distance of not no ~ t han hal:’
between t~ n o ai r fo i l  bottom and the curve determined by the “r ’~ter ;; of ~l . c: oscu at in g
.;phc re s. T~n i s rc ’striction will place some distance Letwe.n L ien Loun lar J of ’  the

: oor’IiflatO and the centers of the oscillating spheres. The 1~~:; L a n r - : nust be small
enougln to avoid potential problems which would result if the lower ‘:(:(~n i~r~ tdr
boundary were tc’ approach the center of an osculat ing sphere . In such a :‘tse ,
small d i  stances along the lower coordinate boundary would produce large correspond-
ing distances along the airfoil bottom. The result would be an under resolution of
the bottom of the airfoil  and hence an undesirable loss of accuracy in a numerical
solution for the flow field . For an illustration see Fig. 6. Tie rather uniform
mesh distribution on the lower boundary is denoted by a ;;e~uence oi’ x ’s and the
correspondingly poor mesh distribution along the airfoil bottom is denoted by a
sequence of dots. To obtain the desired lower bound on the amount that the camber
curve can be lowered , half the minimum vertical distance from the bottom of the
airfoil to the trace of center points of the oscillating spheres must be calculated.
This is accomplished on a discret e level. The analytic curve for the airfoil is
discretized by a uniform mesh over its parameterization and at each of these mesh
point s a unit normal vector (Eq. 2) is computed when possible . At inflection points
the curvature vanishes and the unit norma]. vector given in Eq. 2 does riot exist .
Otherwise, the unit normals always exist and point in the direction of curve concavity.
This is easIly seen from Fig. 5 and the observation that the center of an oscillating
sphere is in the positive normal direction. Consequently, a change in the direction
of curve concavity can only occur at inflection points. A method is then needed
to ~etect those inflection points where a change in the direction of concavity has
occurred . The chosen mesh may not explicitly contain any of the inflection points
but this is really no problem . The mesh is considered as an ordered set of points
starting at airfoil leading edge and moving in a counterclockwise direction along
the airfoil bottom, around the trailing edge, and then back along tine top. At the
leading edge , the norma]. vector is pointing into the interior of tse airfoil and
here an integer value of -l Ia assi~~ied . At the next point , t i e unit normal vector
is projected upon the previous unit normal vector (which , in th is  case , is at the
leading edge ) by means of a dot product . If the data point s are reasonably close
together then the dot product is nearly +1 or -1. If it is nearly +1, then the

.13

_  _ _  -



R76-9l2l1~9-~

integer value is unchanged. Otherwise, a si~ i change is given. The process is
then repeated and mesh points are successively assigued integer values of plus or
minus unity. Specifically, the value of -l is retained until the first mesh point
in the concave portion of the underside of the airfoil is reached . From there the
value of +1 is maintained until the next change in concavity occurs at the first
mes n n point where the airfoil becomes convex again which is usually near the trail-
ing elge . If there is to be only one concave portion of the airfoil, the process
can be terminated at this point since all other values would be -l indicating that
t~ne remaining normals all point inwards. It is now clear t:at by ordering in a
counterclockwise direct ion as opposed to the opposite direction , the indicated
possibility of early termination occurs and is a way of conserving computational
effort. (:‘ee Fig. 7.)

In concurrence with the above process, when points occur with assi~ ’ied integer
values of +1, the centers of the osculating spheres are calculated from the expres-
sion (Eq . 3). The x-coordinate of the center of an osculating sphere must usually
lie within an interval determined by the x-coordinates of two successive airfoil
mesh points. The only other intervals are the infinite intervals upstream and
Jown st rea~:, of the airfoil. To find this interval a search is performed along the
bottom of the airfoil . The integer locations are saved and the ‘ertical distance
can easily he computed as the average of the y-values at the interval e~ndpo int s
minus the y-value of the center of the oscillating sphere. For an illustration
see Fig. 8. The mesh along the bottom of the airfoil is denoted by a sequence of
x s  and the center of an oscillating sphere is given by a normal ext ending a dis-
tance of 1/K outside of the airfoil. As this process continues throughout the
concave part of the airfoil bottom , the successive vertical distances are monitored
and a minimum is taken . Next, the maximum vertical thickness of the airfoil is
computed. ‘~‘1ith t:is information a criterion can easily be constructed to determine
the amount which the camber curve is lowered to form the bottom of the computational
domain. The difference between the periodic spacing and the max imi~m thickness of
the airfoil just the smallest vertical distance between consecutive airfoils as
their :horIs are t raversed, if one ha].! of this distance is less than the allowable
vertical L: :;tance due the concavity restriction above , then the bottom of the com-
putational domain is set at one half of the periodic spacing :listance below the
;aml er “ui-y e • The top of’ the computat ional region is then one half of the periodic
spacinc dist ance above the airfoil; and the computat ional domain is bounded from
above and below by well-centered curves which are parallel to the camber curve.
By contrast if the inequality is in the other direction, then the camber curve is
lowered by one half of the m axim um airfoil thickness plus the distance due to the
concavity restriction. This results in a computational doma n which is not as
well centered about the airfoil as in the previous case.
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The Construction ef’ 4th C n H ~r Curve

‘he ahoy’ cr l fc-ricn for t h i n  ir a  I 1 i , ~p i r ~c cn r ’ ; i t s  of the rarTh~’r curve can al l
be ~r-s~ ra~ ‘~~~~ before he canTher r-~nrvc ’ is erns ’rurt i’d . Eon its afplication the camber
‘ni r~~’ nus~ hv icns ly be I;: ~‘xistence ~ and therefore, shall now t ’~ cons ’nnc 4 ed.
Si n e ’  he al rfrii i a l : n  is spn.~i “l ed as a sr- pu -nec of von 1 ira l slice:’ x x~ with
:‘ —~r-~~u ’ . ~ ~~~ ~ 

(whir-h are assumed to he upper and lower surfacc points
r r ~’’e ’ i ’,- ’~ l ’,’) , ai rfri J , rarTher i~r t a is ~nn ’’ra 4 r’d by a en 4 n i ( n  of the fern x —

v - ( l—r~ 
‘)v. + 

~~~~~ for () < < 1 , as i runs 1 F r ou~ h all o ” t;he ‘. “r~ ica slices.
~‘or a s~ c o t h  sr -k  of c-anTher Iat,a the sc’iuenc’e ot~ must be c~enera 1”d f’ronr. a ron~ m u cus
f~,mc 4:m nn of l i n i ’ d t o t a ~ van i’t ion ( ,nee  Roydon .  R e f .  17). Thr - r i - su I t  of any such
chc’~ se of ‘~ n o~~’ ion w i l l  1”  a so huenee of da t a p o i n t s  wh ich  r r -in~ h1y fol ~ow the  camber
of’ The aj r f ’c ’i si nce ‘n i l  I a ’ ’i J ( j f l t - 5 ru st l i c  wi th in  f h ~ int e ni er  i f  th~ a i r fo i l .
:‘ e~~’ roSy -SI ’  sr-c , ‘he ~‘ ‘~~~‘~~ e ~~~~ 

- i/2 was s el o e t ~~,1. The r °s,u t I n ’  s° i~Jr ~nce of data
pi in ’ n i n  ~‘irst rarar ’’~ “nizr ’ i b y polygonal arc length and 4 h ’-n  fj t  w i t h  a leas t—
nc -u a r r - ;- spl~ ne c~ur ’.re . Ph ’~ f i t  w i l l  vary in accuracy dr -p en d ing  upon f he n’njri r-r of

I in r -  r e ,~u ’ n I  s ? n  a r -  used . h ’n . ’r ai ly t i n e  accuracy wif l  inc rr -ase  w it h  the number
o~ se~~ ”n~ e whe n - ‘ver v~ h i n ~ e~ nr  remains unchanged . In t h i s  easr - , however , accuracy
i n  li -sr  inpor ~ an ’ ‘ han I f  was w i t h  the airfoil contour. Cr’nso :u n t iy , a m aile r
n ’mni r -r of -r . ’n t r  ar’ ~~ ‘e 1”~] ,  Ilnl’ ’r the assumption th a 4 t h e  our -r e re am s reasonably
near ~hr - d a t a , i

~~r , , , s I y ‘~i I ] i t i r n r i I constra in f on accuracy is I ha ’ the  noly~rna l arc
l r - a ” h  eara~—e ’eriZation pr ( ’r i’i r - s a reasonable approximation to f i r ’  a n a l ’ Ic’ are
I r s ” h of 4 t .  r e su l tan t r-ui’vr’. Fbi  s r a r ’ of th e  camber curve is used to form ut r i-n
and lower -‘r’~r~n ’a1 lonal boundaries which  are directly over and under the a i r foi l
i’ - ‘n :’. Ci ‘h”se part .s of’ ~h”  i-u ’ -r boundary loop it is mmp or ’ an ’ t o  oh t a i n  a
re-r n ~r, l !v u ni “cnn nosh d i n ’ rib ’ n t ion w it  h r r - sp” - ’ t to arc I en~ h s i n c e  j I  is ‘h is
C” : ” i i s ’ rj h u t  ion whi r -h  wi l l  ic -  used t o  im ~ ( ni’ a par amet eriZri t iOfl  ow-n ~~c: ’~ of the
a ir f o i l  sip ’l’aee as normal lines arc i n— peed .  A uni f’orr- ,n i n b i i v i s i o n  of t h e  parame t er

~i~lu o ,- ’ ’ ~ i l i  then result  in a un i fo ra  d i st r ibu t i o n  of m n - n h  n — i n t s over the segments
in  51’ s ‘ i i  on both ‘h e  a i r fo il  and t h e  surroundin~ cant n’ c i s.  ~\n a l  i i  t ionn i
1 ‘ -c-us is  ~ha~ the l inear  “x t  ens iens  of the earnb ’~r curve i n  ups 4 r ar: and downstr c-am
I ir ” r - ’ - ons ard  s impl i f i ed . Sinc e the parameter is almost  an arc leng t h parameter ,
i t  sas an - t r r -  leng th de r iva tiv ’  which is near ly un i t y .  On the linear extensions
a cor ’ ! f l n f l ’n S  r c r t n  c ° nucpans ir n rela ’ lye to arc leng t h  I n  d ’s ir e d  so ‘h a t  the number
of mr-nh p r i s f:s are conserved as t h e  com putational boundar~r-s an’- s}c’-~ eh o :I . Other—

so t h e  n u n - n eal eonil l u t a ’ ion  of t h e  viscous flow field wou ld overly n- -so I V r -  the
;;t ni-tr-hn ”l rr-s~onn , and thus wasl:e a considerable amount of c n n:put at i ona l t ime on
parts of the flow where no substantial chan ges are occurr i ng . Typical extensions in
the ups l rr ’arn and downstream dire-ct ions would be on the order of one chordal l engt h
of’ the airfoil in each direction . The number of potenti ally wasted p r i nt s then
could b” sUbs’an t iai.

Since tr e linear expansion is to occur smoothly from an existing arc length
paraineterization , the arc length derivative of the parameter must be unity where
the extensions are joined to the curve . The direction of each extension is given

- 
by the specification of a unit vector in the desired direction. Typical choices of
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direction may , for example, be selected from the flow conditions or from the global
airfoil geomet ry . More specifically , one may stretch the coordinat e syst~ n in the
free stream directions of the far field velocity vectors upstream and downstream of
t ine  easoade. Or one may stretch the upstream and downstream extensions in the direc-
tion of the real airfoil camber line as it emerges from each end of the airfoil.
This latter choice is a result of the global geometry since the direct ion of the
real camber line is bent by the airfoil contour under the requir~nent t hat it be
the midpoint of its own normal line which intersects the airfoil on opposite sides.
W h e n  ‘he v -n ’ j ’ -ur  I l y  a’r c - r a g r ’ i  a i r fo i l  data is fj t  w i t h  a smal l nun-l i-n of splinod
se . -””n ’ s , t h e  ‘re ”cur ae ’; of ~h r -  fj t  is l owered and the  a l i . r n m e n r  wi th  th e globa l  ~errmot ry

“‘l”~ Vi-d. At f l u e  l” a d i ng  and t r a i l i ng  “dges of the ’ a i r foi l  the unit tangen t vectors
o I he  car-i--i’ curve are well aligned with the global ge~~ietry and are nearly in the same

i ir ”~ t i o ’c  as t h e  en dp oint  t angen t voctors of the real camber line. By contrast, whena
la r ’ ‘nurTh ’ ’rof r c p l i n ” i segmen t s  arc- usi-d , a h i gh ~ y accurate f i t  is obtained and the unit
‘ asg”s ’ v - c -~ ors at the endpoint s of’ the  resu l t an t  curve are in l ir e t,ions which generally
on : y n- - f l - -c t  the  local a i r f o i l  c-r -ometr ’,- and no~ the a i r f o i l  camber. For example , if
th e  ] “ a ’I i n ’  and t r a i l in~ ed ’ - s  of t h e airfoil are formed by circular arcs , then
‘in ” i c a l  a’sr’ra • -’-n over ci rc les  w i l l  resu lt  in lines parallel to the x—axis (which is

~enerally no ’ ailirn e l w it h  ‘i~ ’ endpoint camber directions ) and this may or may not
he a 1 -irai te direc t ion for an ext enn ion  of the  coordinate sys t em. Thus , the direc—
‘- io n s  upo n which th e  camber curve leaves the airfoil are controlled by the number

:uJ in- -I r egrien t s w h i c h  are u i r r ’ d in the co nst r u e t ion of’ ~he curve. When the
i i r - ” - i c n s  of • ‘X~ Cfl5 i n f l  ar’ ne ’ sp er l f ir ’ d , the c-amber curve wil l  he extended in the
t i n ” l en s  which it leaves t h ’  a i r fo i l  and the directiona l control , as seen above,

wi l l  he a r’’n’ujt of t h r -  n ’unl ’’r  of splined segm - ’nts .

~h- - d i rec t ions  i n 1ues f I t  ii an— ebtain c i from~the unit  tangent vectors to  the
-‘ar :l ‘:r curv at 1- a i l s -  and t r a i l in r -  edgr-s . Let ~ ( t )  for C) � t � denote the
earl  or cnrv h r - fw ” n leadin -  and t rai l ing r-dgen . Then t h r - v—ct or  field consis t ing
r ” uni ’ t~~i - ’~~’ vec to r s to  

~(t) is given by

-4 -4
- ‘ d~ d~v ( t )  (Ii )

W ’ ”iP II i s  ‘he  arc 1—n - ’ in a r f i n g ,  from ~ (o) .  Th e approximat e  equality is a result
of ’ ‘b’ pclyeona l approximation of t to S. Since the vector f ie ld  v points in the
t i r ” c t~~t n  of’ increasing a~’c 1- -r n ’ h along ~~~, r h o  extension in fror :t of ‘he leading
-‘~~ ‘r- in  ~~ t~ , ” n i-n a ’ lye ~( )  direction . Thus , an extension in front of length  F

if he ‘ rr’.

~(o) SF( t )  ~(o) (~
)

‘~“,‘-rr- S~’ ~ th e arc length measured from -F to 0 as the parameter I varies from 0
‘ n SOn-P T. The value of T will determine the proportionate number of points in
“roe ’ of ~ relative to the number of points on 

‘

~~~. If ~~( t )  i s  discretized into k
1rOj f l t,S uni t ’ormly distributed wi tch respect to t , then the parameter spacing is given
I~,’ A’ /(k-l). For the extension in front, the greatest in ’ eger part of F/At
(ni -nc’ ed ~F/ A t ] ) is a measure of the number of whole At increments tha t could be
fit Into the ext ension !.f the parameter t of the extension were to approximate arc
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eng t h .  For small extensions it is desirable to contthue th°’parametric approximation
to arc length by a liscretization of the extension into the number of parametric
intervals just given. However, if the extension is large a coordinate stretching
r — i a i ’,-e to arc length is best . Large extensions are often needed to approximate
free stream conditions. Thu s , the extension is cut into

= min ([F/At], mF) (6)

im i’ c- c f  l— n-’ h At where the posi’iv— integer mF is a specified cut off value.
The arc l eng t h  funct ion SF ( i )  is then to he parameterized from C) to T = nFAt.
A’ ‘ h ’  \ri~ l u -  T the  derivative of SF is taken to be unity since th e-- extension is to
he joine d at t h e  resultant point with the nearly arc length paramet .r-nized curve

The i s ired stretching is readily given by tiTe quadratic are length ñinction

= (T- t ) [(~~ - ~~ ) (T -t )  - (7)

which nonot.onically increases from SF(0) = — F  to sF ( t )  = () and ends with a slope
of SF(T) ‘- 1. A graph of 3F appears in Fig. 9. If F is large the function leaves -F
fair~’,- raT l i l y  arid gradually decreases its rate of climb fe-war ts 0 where the rate of
increase becomes proportional to arc length . Upon substi tution into the expression
for ‘h o  l inear extension in front ( 5) ,  a discretization for t. = 0, At ,..., nFAt
yields da’a points on the line which at the start are separated by fairly large
‘lir ’anc-c- t hat continually decrease until the end where the separation is propor—
‘ i ona j to  arc length. When the parameters of the discretization of are each
increased by the addition of T units , t,he result is a discret,izaf ion of the exten—
~~jc~~ in f’rcpt continued I y the discret ,isatc ion of ~ with the new parametenizat ion
which  var ies smoothly through the juncture point . . Note that , the j uncture point is
produced by both curves but is only ecuntei once in this process. fhus, i;he dis—
r’-’isa ’ i on  —ossists of k+ nF poin’s counting endpoints. The last point has a

par ve - ’ or v’n l ue of t~ = t1 + T , and a r a t e  of ’ rha ig~ that is direc t ly proportional
t o  arc le’r”h .  In t he  same manner as before , an extension of B units in length is
a~1’i—d i n  t form a u n-ar i-on ’ i n u at  ion in back of the a i r fo i l  t ra i l ing edge. The
cx ’ ‘n s i o n  in of th e  form

+ SB ( t ) V ( t l ) (8)

-whe re 5’B i,s ‘he  arc lens- t b  measured from t”- to t2 + B , as t,he paramet er varies from
t—t ‘ ü t ’ -, + B for some length R. The value of t2 was chosen instead of t1 since the
eventual diser ’tization will be a cont,inuation of the previous discne’~izations , and
this choice will immediately lead to a smooth continuation of’ the paratnetenization.
The extension in ba ck is cut into

= min(r B /A tJ , mB) (i)
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unit s of lere~t h  4t with an integer cut off value of m~ for a total parameter change
of B — nBAt . Unlike the extension in front , however, the extension in back expands
from an arc length parameterization and not into one. This chang in direction results
i n  ‘-he  rs nuire inent that S ( t ~~) = 1. As before, a quairatic str—tcl nin function is
sufficient and the result is given by

B 1sB(t) = (t - t2)~ (—~ - ~)(t - t2) + (ao)

which monotonically increases from SB(t~~) 0 to SB (t2 + R) = B and starts with a
nicr i- (tn) 1. A graph appears in Fig. 10

Tho l i s er t izat ion for t = t0 + At ..., t + 
~~~ 

yields data points on the
lin’—ar extension in hack which at the start are separated by distances that, are
T rorir ’ i onal to arc length and then continually increase from there in an opposite
fashion to the frontal extension. When this discretization is added onto the end
of the rr~cr discretization , a properly parametenized discretization of the entire
camber curie with extensions is obtained. The parametenizatics starts from 0 and
‘nm with a value t

3 
= t~ + R. The total number of points in t h i  s discre ’ isati on

is  siven by the sum ‘~F + k + rIB. At this stage the data point s could be fj f  wi th
smooth curi ’ that is parameterized in correspondence with ‘he -lyon discrr-~e para—
me ’ eri ral icn .  Instead , however , it is best to directly use th abi~re diseretizatioru
to form a properly parameterized discretization of the “n~ir” o~it n loop which
-nelr ’-ir ’s  the airfoil and forms the outer boundary of tb- cc “ i’din-~tr system. Then
t b -  cu er loop discretization will be fit with just one curve fit i n g  process as
opni sed to separate curve fits which must be smoothly joined t”wo cn the upstream
and tr~~n:’frr’ar endcaps and the vertically translated car-i~ e’ i-nrv’~~. i c r  an illus—
tra ’ien , see Fl’. 11 where the constituent parts of t h e  out er i oop have b -en dis-
play-  1. The i-amh-r curve appears ac the curie which linearly er rr -e-- s Cr c-n- ~he airfoil

~~!- r ’ c 4 , i’ cx ’ ‘-nsions . The vertical translates are then display- I along with the adjoining

‘—nd”nrs. At t hi- expense of a small amount of storage the discreti:-cation of the camber curve
i ’ , ’r’ ically translated above and below the airfoil in the manner prescribed by
t b ’  rL~ ‘r r i ~ t a  of i h  previous section which yields a determination of the vertical

i~~ an i -’ of ‘rrtnsla ion based upon the airfoil thickness , spacing, and underside
eurva ’ure

The C-ns~~ruc tion  of Endcaps for the Outer Loop

~~ t t h e  ver t ical ly  translat ed camber curves of the previous section he denoted
by ~ ( ‘ )  and ‘

~~ ( t )  for the lower and upper parts of the outer ioop. As with the
earrTh-r .nirv” itself, the range of the parameter t will be fran 0 to t

3 as the curves
ar- ‘ravers”-l from front to back. To complete the specificat ion of the outer loop,
endeaps r~is t be constructed to join the translated camber curves together , at both
the front and back “ntis. For the construction of endcaps, it is sufficient to use

18
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a bicubic curve at “ach end with the stipulation that function values and tangent
vectors are mateh ’d at the joins . I~ will be assumed that the parameter values are
‘aken ?~-en- C) to some number T. It is of t en convenient to ~;n + ; T equal to the periodic

~l-ac~ n.- di s t ance. However, this choice in arbitrary. The adjustment ti a larger

~ ilu of T wil l  only cause the h icub in  to bulge out further than b”f ’c r i- an-I , in this
v- ni~’I , the-- huige can be used to stretch the coordinates in it similar ~-~ nno r t o  the
—arli er x’ -nsinns of the camber line. Unlike the extensions of the camber :lin- ,

‘ ?  e;.:~ ens i—ms due to this bul ging action have no periodic ali; ’rLcent and enj ’r tend
to s-~l -irate ~eint.s where upstrn am and downstream data must be specified . Thus, it
is ~-nc’h ror° i siralile to stretch the coordinates with only the  c an-h er in— exten—
Slfl!s and not such bulges. Each cubic polynomial a0 + a1t + a t ;  + a-2 t3 is ‘Iet er—
n - i ‘ i’ a sys ten - of’ the form

1 0 0 0 a
(11)

1 1 .2 a~ 
=

0 1 0 0 a2 e2

O 1 2 a~

‘
~~~~

-
~~
‘ ‘ 

~~~ 
n-c l e1 ar’ rcJ~,moniiaj values at the respective endpoi nts o and T , and e2

I ’  th s ln rc  a~ o. fl-i c ~‘st ~’n-. is ‘-asil solved to yield the polynomial

2 

e~~,
_ t 

~ - 
‘- 2~~ 2 

- 2 ~~—~~~~~—~~~~~
‘ 

-) 

(
~~~

)

For ‘I x~~-— i - o r i i n a ’ es , the endpoint evaluations are equal lu’ to ~he vertical align-
n-en ” e ; ’ ‘ bc  ~ar’b’- -r ’ l i n e s . Consequently, e0 e1 and th e pol~rrv n-ial hecc n-es a

I’ - whi ch starts with a slope of C and ends wi th  a s ic -n— of —c , (see F’i ”. 12).
In tH’ “ron’ e~, ~i 

(o) and in the back e0 p1 (t.~) where the decomposition
= (ri , j i - )  has bee ’r ~ used. The slope e2 is given by the x—component of the lire—c-

‘ i o n  of card -v line extension which is — V ( o )  for the front and ~ (t 1 ) for the
hack w~~re v(t) is giver. by Eq. (1~). The negative slope of —e-- is need i at T

* 
since ‘ I c  arar r ter values are incret ~ing in a direction opi-osite to the unit
vi-etor which  poInts in th e direction of camber line extens ion ’ . The y—c omponent s
of ‘hose slope conditions are used to evaluate the quantity e, for the calculation
of tb IT_coordina t es. ihe polynomial evaluations for the v—eooslinat. -s are given
b e0 = p - ( o ) ,  e1 q0(o)  for Lb front and e0 1_ (t~~), e1 = pi - (t~~) for the back .
Uote that the orkntation i~s from bottom to top in frbnt and Crc-c ’. op to bottaii in
back . Tl~1. - Is done as a matter of convenience ~o that  a clockwise parameterization
can be easily ‘iven to the outer loop, The graph of cn-e of the -“iii I c  y—coordinates
i s ‘iv n in “i~~. 13. Th’ endcaps are then d i s cr et i se d  by a suf f ici ent ly fin mesh
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‘I

an I l ’ i t r n - ” i -’ - r i  red by polygonal arc length • When taken with ‘ho vans] ~~~~ camber
lines he -- - n i t  is a u ser-I iced version of the entire cs~t .e r l is T . Bu t , üe- i-” is
st  i l l  no 4 ‘

~~
‘ -dsh’-d since the par—mr-f err ~~ st be suitably a l iu s t o l ‘ C in t ,er face with

h- - P’s i re-I n- -rh pe in t  sped Cicat  i n for the fluid t- ,mami— calculat i r n. fityjeSe

‘ha ” ‘h e ~ nn-’iu ’ a ’i o c n - i  mr -r h is t o  have k periodic m ints along thr ’- transla~ e 1

— n-n-I ’ r l in i -r  r ( ’  ) n - c l  ~( t.), n point s along, t ;h . - front e n lr - ’ IT ’ ~~ t couri ’;i n ~ juncture
p o ir .’ r , n-ni r- c-cint r alon — t h r -  back endcap also not counting juncture roiri i ,s,. The
“e”a~ ms’ui,ational mesh along the outer loop would then c o n s i s t  of’ n-4t~k-th points ;
and ‘h r - r i - f o r ’ , that same number of normal lines to the airfoil sur face. The para-
“- ‘ ‘ric - i ’ P c  of the translated camber lines p(t) and~~(t) is the same and varies
Crc ’s ~ ‘ e I . Gince ‘} ‘~esep aran-otcr i:at ions will be preserved up to rigid transla—
‘ i’ r,s, t h e  int—rvai ~ to t 3 is nut in~ n a uniform mesh with k — i  intervals of length

~/ ( I — ’) .  At. t110 front ‘ndcap n” l  such intervals are needed. Thus , the arc
l -n gth u-c-cr -I -: r iza ’ i -sn of’ the  front endcap must be replaced by a paraxneterization

C) t o (n+l)A4 w h i c h  smoothly passes “hroi,igh the j uncture points. This is
-icccc--r~ is l , ’-d by a blend of s t raigh t l ines from each endpoint with slope determined
by t h n  -‘x i, st  i n -  arc length derivative S at. those points. This process is illus—

~~fl - ‘ i - . i~1.

The liii s are generated with are len -tb S as the independent variable which
Crc-c’ C) to G” , the arc length of the endcap on the front. The slope of each

l ine is 1vr’n by th e  r ,n-tc at which the camber curve parameter varies with arc
l”ri ~ t h  f ‘h ’- i e ’i cn i n - of the camber curve. Thus, one has the two parallel lines

=

i’ (l3a )

and

= 1~~~ (~~~~~A t  (l3b)

w h ’ rr - GF (t  ) ir,~~ i’r’ n by Eq. (7). The desired blend imi st start along £~~~, sr— i—
uall-i 1 cay-’ £~ , and ssic o~hly mer ’r into to end at (s~ , (n + l )At ) .  This is
rt~~~-’~- r u i r h ”  I ~i t h a linear hr-mc I ~ (Ref .  18) between and with a homotopy

— in  - r n-ram— ’ -r r iven by the f un c t i on

- f(ol
= ( i ba )

f ( ’ .)  — f ( o )

where

— i , 2P -
~~ 

(1I~b)
‘ -, — ‘ 1 * t~~~nji ‘ ( - ~ 

— —)
~ ]
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with a daniping factor D which controls the rate of ascention between the lines.
Usually a value of D which lies between 2 and 3 is quite satisfactory. A graph
of h is dven in Fic. l~ . The resultant parameterization is then given by the
linear hon-ct opy

(, - )  = [l-hCI) ~~
(
~~

) + h ( . I ) ;i (
~i )  (15)

whi sh is used to reparameterice the front endcap. Then the parameterization along

~he upper curve ~ (t) is shif ted by the addition of (n +l)At to each parameter value.
Chc’ ri-suit is a - ii sc ret i ce d  curve with a smooth parameterization covering the front
en icas with parameter values from C) to (n+l )~ t and continuing along the top with
(k-1’At units to end at, a parameter value of (n-4-k)At. At this stare, the endcap
at “he hack is adjoined , and in the same manner as above, it is reparameterice’i to
vary smoothly from (n+k) ~~t to (n+k+ni+l),~t where a juncture occurs with the lower
curve ~ ( t) .  Then the orientation of the lower curve is reversed by the relabeling
of points so that one has the curve ( (k- i)~ t-t). The resulting parameterization
for ~ is next , shifted by (n +k+m+l)~ t units so that a smooth paranieterization is
mrorerly suecified for the entire outer loop. The ~iter loop is given by a discrete
set of point s which are parameterized from 0 to (n+2k-+m)At as the loop is traversed
in a clockwise direction. If desired, one can renormalize the parameterizatiori so
that it varies from 0 to 1. The result of a renormalization is only a rescaling of
the r-ara,meterizaticn. At this stage, an application of the least-squares spline
orocedure is used to transform the ~.iter loop data into a smooth curve with three
cont i nue -i’s- I -rivatives and the prescribed parameterization. Gote that the least-
s mar ’s p r o c — lur e  will  effectively filter out the small smoothness errors that
cceurr .”l when arc length was approximated with the arc lnn~th of a polygonal curve.
The small  ,-r-oc ”hness errors in question appeared as slope information at the  juncture

en --aoL end of the camber curve extens ions • Parametric accuracy wi thin the
eanThr-r curve i s  not very important sinc e the periodic al ignment of mesh points is not;
aff’i-c’ e-I by a slight loss of accuracy wit-bin that region. On the endcaps such

ions of’ accuracy would seem more important. However, the construction above
was p’-~’fr .mmn’i in a manner where the accuracy ‘lid not enter into the assignment of
parameter values ai the endpoints of any endcap. The only effect then would be in
the rreei’’is-a’ion of slopes for the lines L

~ and (for each endcap) which would
und-’r ‘is the smoothing of least squares anyhow. Cons equently , the n-I i,rnmerit, of
periodic points will be very accurate.

- 
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The R epa rame t er izat ion of the Ai r foil Gu r face

Gow ‘ ha ’ the outer loop of the coordinate system is c’. n st r i c ’,ed with a suitable
parame~ eri :’at ion , one must reparameterize the airfoil  surface to align airfoil
parame’et’ values with outer loop parameter values so that corresponding points lie
on ‘he c air n ai r foi l  normal line. Once the reparameterication has been accomplished ,
the c,,-erdinate ‘ransf- -rnat ion will he given by the cartesian equation

= R(y’~~~(y
1-) + [1 - R(y 2 ) ]  

~~~~~ (16)

wh~’~’~ x = (x i ,x2 ”~ are cartesian coordinates , ~ is the airfoil contour , ~~- is the outer
loop , i- is a coordina te dis t ribut ion function along the normals , and ~ = (y1- .y2) are
o ,rvilinear coordinates. The coordinate , y2, is the position along normal lines,
and :-~~ is the position around the outer loop which is to b e imposed upon the air-
fe il surface and hence upon all intermediate coordinate ioops. The reparameteriza-
ti,n is accomplished in a discrete manner. A sufficiently dense uniform mesh is used
to discretize the outer loop parameter; and hence , to create a smooth sequence of
outer ioop points with their smoothed parameter values. From each of these points
a normal line must be dropped to the surface of the airfoil. The simplest way to find
t~e desired airfoil normal line is to locate the point on the airfoil surface which is closest
to the outer loop p int in question. For each outer loop point , this distance
n in im iz at ioc pr blem is always solvable since she airfoil surface is either locally
c ‘sVC-X or is locally concave with the centers of the oscillating spheres removed a
sufficier;’ distance beyond the outer loop. ‘i’hls latter result occurred ly construc-

ion wh en a de ’ erminat ion was made on ~,} w’ a~’ oun t, to l~-wnr the camber line to form
‘he low-sr t sndarv of the coordinate system . When the airfoil r-eiirt of minimum
ciis~ a~ c e  is locai c i , j t , is assigned the parameter value of the ou’ er p i n t . The
pr oc-sc is thce, cc ut inued ‘.o the next point  on the outer ioop until all data points
UT; ‘he ou ’ er 1-’ -p have t een used. t h e  result , is a discrete reparameterization of
t h e  a i r f o i l  ri-rface which can be t urned into a smooth curve in either of two ways.
Firsl . the a irm u i l  may he recreated by treating the given airfoil  dat a as raw data
and directi,’,- applying the curve fitting routine. If the reparameterisation should
cai: ’  enough distortion relat ive to arc length , then it is best to consider a curve
f it t.o the change of parameter relat ionship . ‘Th at is . the second method is to pair
off new and old parameter values in the above process and ~h~ rt to fit the resulting
curve . The reparameterized airfoil is given by the composition with the old para-
ric t eriration expressed as a function of the new parameterization. Consequently,
the airfoil geometry remains invar i ant in this process and the accuracy and rendi-
• ion ‘f airfoil curvature is preserved. Thus , when the original fit~ to the airfoil
is a good one , the second method is desirable.
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An i~ t coral part. of the reparameterization is the method used t’. drop the
normals . For reasons of simplicit y and stabilit y, the algorithm is based on the
minimisa ’ ion -‘f distance , as indicated above. The outer loop mesh points are con-

~ecut  ively take r in the clockwise ordering of t } -  parameterizat ion star t i r g with
t h e  lower j u n c t u re point of the f ront endcap and the lower camber u rve . At the
first. point . the distance t o an airfoil data point wi th in  t i - c  leading edge region
is c -rspu t ed. l’hen a search is performed over t h e  ex i s t ing  a i r foi l  data with
cartesian x~ coo rdina t es less hat the a -we distance, t h i s  criterion limit: the
search toa re-ion around th~. leadir , - ‘. lgu . i’he result is a fairts’ rapid determina-
sb  -s f’ ‘ i c  ex i s t i n g  data point ot’ min imum distance. For an illustration see Fi g.
l~- wL~-i-e d is’ the dist ar e-- c o ‘he leading edge region. An ar .: of radius d and
cent crc- i a the first outer  loop p oir :~ ~ (0) is used to de-” ericin’: thi’ vertical line
‘ a r - n ’ t o  ‘h e  arc which appears a: the dashed l ine x = 

~~~~~ 
+ ~I. This ver .ical

cut S c airfoil into two parts. j O  t h e  r ight  of the line ~~~ po in t s  or t i e  airfoil
e g r ea ~ er t han d aud hence need no ’ be cons idered. h - c , she search is per-

formed -n she smaller rcgion to the left which contains the l’cadir~,; edg e . iLe
I,c-:a’. ion of’ the a i rfoi l  data point of mm m cc d i ct  ance is - hen sed to start the
sea rch algor ithm us ed on the remain ing points . The algorithm st .art: with a known
previs : posit ion. For ‘.he first point , this position is as,. s d  to be the loca—
‘ ion determined above. For other outer loop points , the previous position is taken
t o  -c the ex is t ing  a i r fo i l  data point •~ust before t.,he point on the airfoil determined
L ‘-he normal line dropped from the previous outer loop p . m t .  since cu t e r  loop
poixY s are taken in a clockwise order , the previous poi r t. on the airfoi l  is simply
the ex is t ing  airfoil  data point which is nearest- ‘o the point in quest ion when dis-
t ance is measured on ly in the couterclockwi’se di rect i” , , .  From tic -re- : a distance is
comp’. ted and the search over existing data is cont inued until  th e measured distance
exceeds the  s t a r t  ing distance. This process limits the sear -ct ,  of’ ex is t ing  data
point  s ~.o a small ro’gion on the surface of the airfoi l , and h i s , saves computer
t ime . For an illustration see Fig . 17. The mesh on the outer loop is denoted b y a
sequence of dots and the existing airfoil data is denoted by a sequence of x ’s. The
distance , d1, to the previous airfoil data point is measured along a line (dashed in
the figure ) which generally intersects the previous normal line unless the normal
line emanates precisely from an existing airfoil data point . The search is continued
intil one reaches a distance , d2, which is greater than the s tar t ing distance , d1. In
the illustration , the search would result in the selection of tile point of minimum
distar.ce from the first three points pictured . After the distance has been minimized
over the existing airfoil data, the analytic formulation of the airfoil contour is
used to create new data for a refined search in a small neighborhood of the point
determined from the search of existing data. The simplest procedure is to search for
a point, of minimum distance over a smaller discretization ar ound the locality in
question . A uniform mesh is placed on the corresponding parameter values so that a
dense enough discretization is obtained between the nearest existing airfoil data
points on either side of the minimum point . If the first point in the search of exist-
ing data is the p int of minimum distance , then the mesh refinement need only cover the
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* interval from ‘hat point to the nearest point in the clockwise direction. This
smaller  m t  -rval can 1 e used t o i r ~c’reace accuracy or the speed of computat ion. In
Fig . 11 ‘he firs’ point is displayed as the point , of distance d1. A move in the
counter ~-L. - -kwise d i rec t ion  would only increase the distance; and thus , not contri-
tot e t o  t h e  search for min imum distance. For more accuracy fu rther local refine-
men ’s could t c t aken to form a nesting of refinements. However , when the accuracy
is of t i j e  same order as she cur--c fit,t..ing accuracy, there is litt le need to continue
the search t ’. ,-rc-a’cr perfection . The local search presented here is probably the
crudes of’ all known techniques. At the expense of extra programming logic more
efficient t eo t c i ques can he applied . or e  of the easiest methods to apply is
he met hod of Ifooke arid - ‘eeves ’ . ‘he search in that method is broken up into a
sequence of exploratory and pa’’ern moves . For details on this and other methods
see ~he text n:,- J. R. Walsh (Ref. io). However , for the one dimensional airfoil
surface c- tic idered in this application, the payoff of a more efficient optimizat ion
techniq e is negligible and , in fact , is probably less eff icient  when ‘he  additional
logic has teen added. On the ot her hand, if the natural three dimension al ex’. enision
of the coordiante c.r,struction presented herein is to be done , ‘ hen th ,.. meth od of
search is more important and a more efficient optimization technique should ‘ e use’l.

Distribution Functions

When partial differential equations are discretized in terms of differc-nces,
the derivatives are replaced in some fashion by difference quotients. A simplifi-
cation then leads to the difference equations that we solve. Implicitly in the
discretizat ion, however, is the assumption that derivatives are acc- ra’ • I,’ es’ imated
by secant lines. But then the exact solution may experience drast ic  varia ’  ions in
a short distance. Such solutions are said to have large grad ient s .  In rec’isn:
where the gradients are large, the approximation of derivativ- : t~, secari ’s rca ’,’ f e
very poor unless the particular region is disected into smaller n o - L ies  whi& ’. have
reasonable secant approximations , a practice commonly know~i ~~ rce:h r,fs,e~ e-nt . In
fluid mechanics , the boundary layer of a viscous flow around or ‘h ro~gt, an ob ,~ect
is such a region.

Obviously, the necessary resolut ion could be accomplished by merely increas ing
the number of points in a uniform distribution ; however , this would reqUire- excessive
compu ’er time and storage . Another alternative, known as the interface method , is
to use a refined mesh only in the given region and then join it with the global
mesh . An improved technique is to use coordinate distribution functions which
smoothly distr ibute mesh points so that in some sense they are spaced in roughly an
inverse proportion to the size of the gradients. Thus , regions of high gradients
have proportionately more points than regions with smaller gradients. Unlike the
interface method , the trans ition between different mesh lengths is made continuously,
and as gradually as possible . Distributions are often used when the distributional
t ransformat ion is applied to an independent variable of an existing transformation.

2L~
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The result is a new transformation obtained by composition. With this approach ,
the prob lem of mesh point dis tr ibutthn is replaced by the problem of selecting a
suitable set 01’ distrit u ’ ion funct ions within a transformation of coordinates. The
problem is a nontrivial one since the distribution functions should depend upon the
nature of ‘he solution being computed but are determined in advance of the computa-
t ion . ‘hus , some pri r knowledge of the solution is required. In f1ow~ with large
f sundnr’y lacer separation or with adjacent dissimilar components , the critical
~‘e, jo!  ‘ o 1 to-solved is somewhere in the middle of the flow. Fit . the location of
such  r e - i on s .  is oft en un known at the outset of the problem . ‘Inc - method to overcome
nhj s dit’fic’~l r ’,- in marching pr .’cedures is t~ create the d i s t r ibu t ion  funct ion  at the
:‘x ’ level t as-ed upon a knowledge of the solution at the present level. Care must

- ‘ ak -n , howe ver , to create a distribution funct  ion that. is su f f i c i en t ly  smuoth in
the marching direction . In many problems of practical interest , however , the regions
that need resolut ion are known in advance. Typical exaznp les are attached boundary
layers and boundary layers that may have small separations or separation bubbles.

‘,~ith i n ‘ne  framework of cascade coordinate systems boundary layer resolution
or, the inner surface is accomplished by setting

R(y2 ) = 1 + ( ~~~ y~~ - l ) tanh [D ( ~~~ L ))  
~~~

w L .  rc - a is he estimated boundary layer thickness , b is the desired propor’ ion of
mesh poise s. in the boundary layer , and D is the hyperbolic dampling fac ’. .‘r. :hc

oum iar’,’ layer growth a g ives the fraction of the flow region occupied by th~
‘u.ntdar~j layer , b is usually taken as a constant , and D can be given a value sf

at.ou ’ 2.  When is small , the radial distribution of equat ion ( 17) re-i iCc - S essen-
tially to ~.i1’5 line

(i~~)

which would have been chosen had we used the interface method . As :2 approaches
unity the d is tr it ri ti cr i Eq. (17) smoothly approaches un i t y as illustrated in Fig. lh .
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IV. THE GENERATION OF TI~~ NAVIER-STOKES EQUATIONS WITH
THE METRIC DATA FOR CASCADE COORDINATE

~-h efficient generat~.on of metric data is an important part of any solution
j r t -” Jurc -  involving general curvilinear coordinates. Before a solution can be under-
‘ ir . ’fl~ the ;~~,‘:ica1 problem must be specified . Problem specification, however ,

‘ t h e  creation of boundary and initial data and the generation of the equa-
us i f  r ,o~~ior~ witS the associated boundary conditions. In addition, the solution

ma’, ic - monitored , examined , or put under physical constraints. In all of these
‘ &stc c , ‘.1- ’ m t .  n c  data is needed. A knowledge of the n~ tric data is enough to corn-
pl~.’t- l,y si .- ‘ir ~ the equations of motion and analyze the coordinate invariant direc-
‘ion: for the specification of boundary and initial conditions. For very complicated
;- ‘o m- ” n-i c-s t I r e  equations of’ motion may contain an inordinate number of terms. How-
ever. if’ tILe t - iu at ions  ai’e taken in tensor form, then the coefficients to terms can
be ‘ .- ‘,s’ru ’-ted from the metric data with the construction process being perforn-~d
on a corcput- ’r. nce a nontrivial term is constructed , its contribution to the

1 s~::eren.c equations is computed before searching for the next nontrivial
‘en ”- . - , cs ntially, the process continues until all terms in the equations have
;iv~ ’ their ‘ontributions to the system of difference equations. Then, in the sari~
:‘ ‘s . io n , n’ ~ycles through terms in the boundary conditions , sequentially adding
in ‘1, -j r  r’~n-pective contributions . The result is the desired set of difference
eq:~o’. ions , and the problem is effectively reduced to linear algebra. Note that
,,‘i’o. such rc. t n iods there is no real need to write out the differential equations or
cc’~ licated i~oun -.ia r ’l,’ conditions in detail. Thus, all one needs to do is to generate
• 5 ’ ’ me ’ ri- 1ut~ and us: it .

The coordinate transformation from cascade coordinates into cartesian coordi-
niut”s is giv-’r. i y Eq. ( lu ) in the previous section. By differentiation of the
our .ijnat- tr’o. ,:l ’ormatj on , one obtains the Jacobian transformation which leads
lire - ” ly t n  the transformation rules for tensor fields . These rules allow one to
i’ ,j.’st , r-’cniitc r , or •-xtra’:t basic information from a solution procedure involving
transf ’~rme .i variab les. Th - ’ Jacobian Transformation is essentially ob tained from
the chain rule which yie Lds

— ax aXi ~ X aXi A
= — = — — = — U 4 (19 )

~y 1 
~y1 ~x i  ~y1 “

____ 
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A -‘where u 1 is the s tandard orthonormal basis of’ constant vector fields , and ej is thenatura1~basis of tangent vectors to coordinate curves, With a s11~bt abuse of— —. Anotation, x has been used as a position vector in the definitions of ej and uj .
However , nothing is lost since the covariant derivative of = xiu ,~ is just the
partial derivative of the xi summed on 

~j .  In terms of the notation

A A 0u1 = ( 0 ) and u2 = ( l )  ( 20)

one has

/ ax
1

-ø f~~ T
e1~~~1 2

(21)
\ ay’

and hence u,e -. i acobiarl matrix

/~~~1

(~~~r~~~~~~(
~‘~~~~ = I

~ ~~2 ?~x2 (22)

In the standard cartesian basis 
~~
,j the outer loop and the airfoil contour are

e cpressed in the forn’t ~~~
‘ = 0’~~~ 1j  and ~ = 81u1, respectively. In this notation , the

transformation for cascade geometries is given in component form by the equations

= R (cr1 — B i ) + B 1 (23)

for I = 1,~~. By differentiation the Jacobian transformation is given by

= ~R (
~ 

- ~4) ~ (21~a)

and

~~~ 
A 

-‘ 

(2kb )
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The metric tensor gjj is ob tained from the differential eie rnent of arc length
(ds)2 = 

~jj 
dy~dyi. Fran the known cartesian form and an applic ation of the chair-i

rule, the differential element of arc length is expanded through the sequence of
equalities

(ds)2 = d~
’.dx r ( ~~~~~~j dy~ ).(~~~. dyi ) = ~~~ ~~~ ••, dy~dy

1 
= (ç.~j ) dy1dy~ (25)

aa~i , a: a result , the metric is given by the equation

g1j = e1 . (
~~~

)

‘he ~~~~~~~~~~~~ covariant derivative D~ of the vector is again a vector
a n i  he nce ~s expressible in terms of the same basis 

~~~~~~~ ~~~~~~
. ~tpecifica1ly ,

D~~~. =r . r-~ ’ (27)
~~~j ~~j rn

where the coefficientsF~~ are known as Christoffe l symbols . This covariant ieri-
vative measures the rate of change of ej along a coordinate curve in the direction
of e1. This coordinate curve is an integral curve of which is obtained by fixing
all except the 1th variable in the transformation.

The ass~ nption will be made that the covariant derivative is the natural one
derivable from the metric . This is known as the Levi-Civi~a connection (Ref. 20).
The Christoffel symbols for this covariant derivative are given by the form ula

k g ~~~~~~~~~~~~~~~~~~~~~~ ( -tt )
~yi ~~3 ~ym

where the g~~ are elements of the matrix inverse to the matrix of metrics (g11 ).
This formula is easily obtained by differentiating gjj = with respect to ym,
permuting all three of these indices , forniin~ the s~*i in parenthesis , applying
symmetry to the lower indices of the Christoffe l symbols , and then applying the
Inverse metric. With some calculation, one can obtain the nonzero Christoffel
symbols directly fran the above formula .

2b
I, “—.

~~~
,,-_.‘ —‘-——— — ‘ -.- . — - ‘ . — - — ‘— —‘ .. , —‘ . - - ‘ -

~~‘~~—.~‘ ‘
--‘--—— -‘ — - —-—-——

~~~~~ I- ’ ’ . .
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For the automatic computation of the metric data it is convenient to use
forms which are explicitly given in terms of the coordinate trans formation and
its derivatives. By a direct expansion of the dot product in Eq. (26) the com-
ponents of the met ric tensor become

g =— .- — -  (29)ij by~ byi

it ’ A denotes the Jacobian matrix of Eq. ( 2 2 ) ,  thenit is easy to see that the
matrix (g 1~~) is given by

g = det(g1~~) = det (AtA) = det(A t
) det(A) (de tA) 2 

= (30 )

where J is used to denote the Jacobian of the transformation . For nonsingular
transformations J is nonzero and hence both A and (g1~ ) are invertab le . Thus , the
inverse metric is obtained from

(gkm) = (gjj )~~ = (AtAY1 A~~(AtY
l 

= A~~ (A
_l

)t 
(3~~~~)

which is converted into components to yield

gkfll = (31b )

The Christoffel symbols can now be obtained by a direct substitution into E 1. (28) .
This y ie lds the expansion

1 ~~~ aym 
~~~~ ax’s ô2x’~

= axr ~~~~~~ ~~j  + ___ ____

~~
2

~~
L 

~~ axt a2x~L (32 )
+ + 

~1m ayi ~yi

• 

- ~x1 ~2x L
— 

~~~~~~ ~~~ ~;;r ~Y~~Y
1

29
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which by cross cancellation collapses into the form

k av1
~ ~~m ~~~~ ~

2
~
2 

~,

= 
~~r ~~~ ~~r~yJ f (33)

hut the inne r two factors are j ust the product of the Jacobian transformation and
its inverse . Consequently , they may be replaced by the Kroriecker symbol 8r

L which
is unit~- if r = 2 and vanishes otherwise . On substitution, the Christoffel symbols
are now given by the simple expression

k ayk a2x2
r1j ~~ T ay~1ayi (3k )

which is suitable for automatic computation.

In terms of arbitrary metric data , the governing equations are derived from
‘he ~avier-Ctokes equations for the compressible flow of’ a viscous , perfect gas.
i I r e  resulting expressions are given by

+ ...L.. (puVg ) = 0 (35 )
at ax ’

for continuity and

~ 
+ + ~~i ek = 0 (36 )

for momentum where

a’~ i = (pu~u1 
+ 71i ) /g

30
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an d ~~ “ are the components of the stress tensor in the tensor produc t asis
Constant  total tempe ra ture is assumed , and thus an ener~~’ equat ion is not

required . The primi tive solution variab les above are given ~~~ a specification of’
the s ress tensor which iu expanded form is given Ly

g11 I~ + &k ~
k + bk ‘~ 

(38a )

w e r ’~ L Ij
a K ~ 

(~~
. g~i Tj~, + )

(3-iL )

i t j  2 I i 2 it ~i i~~ 6~ )
= 

~~
, (

~~ 
g 6k 

- 
~ k 

g k (~~~c )

1
for vi scosi ty ~ and Kronecke r deltas 8~ 6~~ 6 ,

J 13

From t i e  ideal gas law and the constant total temperature assumption, the perfect

~as relation has the form

p = Ap + Bpg~~~u ]~UJ

wLe re A and I~ are constants.

.t’ d~-:ired , ~l~e momentum equation can easily he put into conservation law form.
When ‘he expression for the Christoffel symbols given in Eq. (3).~) is inserted into
• ,e momentum equation (3 6) ,  one ob tains

[
~

. (PU~
V•

g) + + 
~~~ ~y1?Jyi1 

ek (
~°)

A change of basis fran the curvilinear direction ek into the cartesian directions

~~
, can he expected to sim plify the momentum equation . This is performed by an

~
pp li( ’  ~it to ’ of Eq. (19) whIch yields

~1j 6m a2xI 1 ~ = 0 (I’l)(p~Aig 
.7_) + 

~~ ~~~~~~~~~

• + 
rlayi j ‘~
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W ith the assumption of nonmoving coordinates the Jacobian transformation was
Lr ou~~,t through the time derivative . ‘Now the definition of the Kronecker symbol
is applied and the dummy indices i in the last term are replaced by k’s. The
result is given by

k axm 
~ m ~~jk 4k ~ axm A_ (p u / g~~~~.j ÷ 3X ~~~~~~~~~ ~~~ ~~~~

—) 
~~~= o  (L~2)

which , in component form , reduces to the system of’ conservation laws

k axm a jk ôxm
— (pu g

~~~
—

~~— ) +  ~
_

~~ ( a  

~~~ 
= 0  (

~ 3)

For more information on this topic see Ref s. 21 and 22

Although the rather formal develpment above provides a specification of a
prof tern in the cascad e coordinate system , it does not provide much insight into the
me’ric structure which is needed to interpret results and to properly apply boundary
conditions. For t his reason the metric will be derived in terms of the basic geom-
etric parame ters of the cascade . Once this is done , correlations between the
metric structure and the underlying coordinates can be made . It is first observed
tha t. the cascade coordinate transformation (16) can be broken down into two basic
par ts .  ,~inc e ~ - ~ is a nontrivial  norma l vector pointing from the airfoil ‘~~ to
the outer loop ~~~, its magnitude d = J - B I I is a measure of the distance across
the coordinate system in the direction given by the outward unit normal vector from
the airfoil. However , t h e  outward unit normal is given by both

~ ~~- r
IL’ -1~II

and the Fr enet form ulas on the airfoil contour . For the airfoil contour a unit
tangent vector I s given by ~ = ~ where S is the - derivat ive of arc length
along the airfoil . Upon successive different iat ion one obtains the Frenet formulas

A
-

_ ‘ r C - K n1
~~

= — c I’~ ~

32 J
~

— .‘-  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -  :‘
~~~
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where c -l on convex parts of the airfoil and c 1 on concave parts. At
inflection points, however , the formulas do not exist. For a derivation of the
formulas one may consult a text on d,iffefential geometry (Ref. 20). Consequently,
the coordinate transformation can b e writt en in the form

(1~6)

with the unit normal vector given by either of the above specificat ions . At non-
irflect ion points the latter specification shall be used so that the Frenet formula s
can ~e employed to some advantage. Since the coordinate transformation is constructed
from f- inc ~ ions each of only one variable , derivat ives of these functions can be
denoted with a dot and result in no ambiguities . In this notation , the transforma—
ion (L~~) is differentiated to obtain the natural basis of tangent vectors to coor-

dinate curves. F~’om an application of the Frenet formulas the result becomes

• A

= Rd n ‘~ ~~ (i — C 1’
(l
~7)

~ A
= R d n

A

~“ or an ill ist ra t i on  of the vector relat ionships see Fig . 19. Since the vectors ‘
~
‘

and ~i are ort.horiormal , the metric is readily obtained from a direct substitution
into ‘be equation gjj 

~~
j  

~~~~~ 
The resul t is given by

+ r~ (l-c~~ d) ]~

(148)
C12 R R d d

(R d)2

and from t h e  determinant of this metric one obtains the Jacobian

J = C = d R S (l-c~~d). 
(149)

The magnitude of the Jacobian , however , is a measure of the relative scaling of
coordinate volume elements throughout the domain of the transformation. If the
Jacob ian is zero at a point , then the differential volume element there is zero and
the t ransformation is singular . Since the Jacobian is a continuous function , one
may also examine the coordinates as a singularity is approached. With the cascade
coordinates presented herein , a singularity can occur only if one of the factors in
the expression of the Jacobian shoul d vanish. However , each of these possibilities
will lead to an unreasonable system of coordinates . The factors R and can be

- 

-—‘ -

~~~~ - ‘ -

-

~~~~~

‘

~~~ 

- ‘ -
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eliminated from c onrideration since both R and S must be given by strictly monotone
functions ; and therefore , cannot vanish . A lack of monotonicity here would cause
the coordinates to locally double back upon themselves; and thus, render local
regions where the coordinates are not uniquely defined. This leaves one with two
possible factors that could vanish. First, if d should vanish , then the airf oil
surface and the outer loop would coincide at the point or pcints In question. As
the p ints of coincidence are approached , the coordinate loops are then smoothly
compressed in~~o a reg ion of zero cross section . An illustration of this type of
r in-Ja rity is given in Fig. 20. The second possibility for a sigularity would occur

‘he last factcr (l-cbFd) should vanish. ihis , however, could only occur in the
r~~~i e i  -~f a c- c- n c-ave par t of the ai r foil s ince ot he rwise the f act or is the sum of
p • i  iv~- qnanti’ies . I t  in the region of a concave part of th e  airfoil, the

c r  the osculatinC spheres were sent outside of the coordinate system by
com~t rci -c~ I - . he analytic implication is that Kd < 1 and hence the factor cannot
vtt n m b

he rat e of change along coordinate curves is measured by the covariant
de riva iv. ~ of the natural coordinate tangent vectors. In this regard, the
~bristoffel symbols contain the desired information. For example , an application
of ‘he covariant derivat ive P2 to e2 y ields

~~ A

P~, e-, = R d n = — e9 (5 0)
R

ani he nce the Chr is tof fe l  n ymbols

= 0 and 112 = B (51)

by o Ls- -r va ’ ic -r i  f rom equat ion (27) .  This result is also partially evident from the
bash- ‘~ me try . be curvec~ of’ constant y

1 are just the normal lines ; and hence ,
any -;aria’ ic -ri  of their tangent vectors must be in magnitude only. This conclusion
is ~~rri ou~ from the analytic fact that vanishes. In the sRecial case of a
o if’~-rm dis i- i t -u t  ic-ri of loops , the function R is given by R = y

~ . ~he second den-
wi’ ive vanishes with the result t hat 112 also vanishes. Then 0 which
implies kha e2 in constant along its normal line . Another example is given by
coordinates with a region where d is constant. In that ret~ion , the natural tangent
-icc -f t’; ‘ u coordinat e curves are given by

• ~ ( i-cici~ci) T (52 )
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t~ L~

which are cleanly orthogonal. The covaniant derivative of 
~i 

is given by

~ A —cKRd
—cKRd T = 

~(l—c!O~d) ~
‘
l

and h e n c f -  t he Chnistoffel symbols

1 —cKRd 
~ P

- 
= r and I~ = r 0 (514)1 P( 1—c ci~ci ) 21 12

ar- c h a ined from E q. (27) .  as before.

The result is again geometrically reasonable since the loopwise coordinate
~aI o-u vect rj  mun~ all he parallel along a normal line. If in addition , the
r - c -~~~~~n were ~o contain the effect of a linear se~ nent embedded in the airfoil sur-
fa - - e. t h - n  the Chris toffel  symbols 

~l2 and would vanish and D2~ 1= 0. The
c -crcIl!~ate~ w :ll then  be locally cartesian . 1Further , calculations and interpreta-

i o r in  of the nature presented here can be done fur the remaining Christoffel symbols.

-

~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ -

—

~~~~~~ 
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RE SULTS

To evaluat e the  algorithm for the generat ion of case-ide coordinate system,’
les cribed in the  previ ou s section s, a suitable test c - se  w as  devised . The chi ef
ct -~~ --r i or. w a s  to c b f a i n  a t~ st c a r e  which was complicat ed enoug h to simulat e a real
cas c -i Ic , and ei specialized enough so that comparison s could be mad = wi th  know n

~eomotric  pa rame te r s .  Jnce most re-il cascades are known to be composed of highly
c amb e r e d  ai r fo i l s , it w~ r required that the test case would be for a c cade ~zi 1- h
a hi crhly bent ai r fo i l .  In addition , sinc e the cascade coordi nates are generatH
f rom raw da t a , the test case w’is constrained to a problem where the a ir l  1 cu rzat ure
w-u - known . In fh i s w-i y ~he geometri c representation of the airfoi l  could bo e-:- -l t e d
for -ccurqcy in both location an d curvature . since circl~ s a re curves wi th  knoc r .
con s t an t  curvature , it was  reasonable to construct the airfoil in the t n - ~ ca s e  ~itu
circula r arc s . The n w i t h  the except i on of t ransi t ional  regions near t b -  iun e~ ur~’s
h~-tw -~-sn consecutive ares , the curvature could be compared with curvature s-f t h e
ur-lerlyi ric- -ire.  ‘,‘lith th~ above cri teria , th e -t ir foil  war const ructed from + w-)
concen~ ri c arcs of slightly different radi i which were clos~ d by sm ’-ller circula r
arcs  at tache -I  to each end . An i l lustrat i on is given in Fi g. 21.

The ~~~ concer t ric arcs were constricted with an inner r adiu s R1 and -in outer
r a d i us  R2 . The center poi nt was t aken at x~ = 0 and the arcs extended through
angles f rom -/I~ to 3~ /~4 radians . To form a closed loop smaller arcs of radius r =

(R2 - R1)/2 were attach -d to either end. These ares were centered at the  c-i.r -t es ian
l o c at i o n s  ( ±x , x )  with x = (R1 + r )t ~~~. To express the dat -i in  term s of vertical
s l i ce-  the ai r fo i l  w-i s subdivided into five regions where a uni que -analytic descrip-
t i on w-- s available. The regions are marked off by the dashed vertical lines in the
figure.  ~‘~t either end the vertical s through the intervals [x 2, x1) and [x 7, x6 ) cut
the airfoil contour on only the small circular arcs. At the next inner most intervals
[x 3, x=) and [:~~, x5 ) the bottom p-irt of the airfoil contour is  given by the small
circular arcs  an-I t h e  top is given by the outermost circular -ire of radius R2. -The
cent ered int rv’-ti [x5, x3 ) lead s  to vertic-ils  which cut only the two concentric
circular  arcs of r a d i i  

~~ 
an d R2 . Th e locations of the in t e r v a l  endpoints are

readily dnt errninel t o be

where A = (R +

_ _  - _ _ _
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0n the small endcap ares a local specification of angul ar position Ic -  r iven .
This is  illustrated by the angle ~~‘ in the figure. Position s along the concentric
arcs of radii anI R2 are gi ven by the angular positions 8.,~ an-I 82 respectively .
The only constraint is to vertically align the data. For notatio n -el convenience
let u(x) denote the upper surface and s~(x) denote the lower surface. Then from the
figure one has

x = -A + r cos~

= A - r sincz ( 56a)

= A + r n ina

on { ~c - , x
1J ‘or p ~~

x = -A -+- r cos~

2 = A - r s i n ~
(56b)

= cos [[-A + r cos&/R ,~)

u = R~ sine 2

- 5ii 7n
on x .  x - :c r - ~- < o �~~~’

x = H cose
1 1

= 
~~ 

sine (5Ec~
1 R1u = H sin icon (—  cosO1))2 R2

on {x 5, x3) for ~ 
0~, < ~~~~, and a similar treatment for the  remaining intervals.

When the endcap angles ~ - and the angle 81 for the inner concentric arc are discretized
by a uniform mesh the result i r a  collectio n of vertical slices which discretely
define the airfoil contour. For the test case the central Interval x

3 
< x ‘~ x5 was

partitioned by 29 verticals determined by 81 = - ~~~~ ~~ - 2d
~
8i, ... , -

where = ~/6o. The other interval s x~, < x - x 14~1 for i = 1, 2 , 5, 6 were
similarly partitioned with 9 verticals apiece resulting from subdivi sion s of the
angles ~ on either endcap . In addition , a vertical slice was added at x1. For
simplicity in the Interpretation of results , the Inner radius was given a value
of unity . This gave the concave part of the airfoil a curvature of unity . Again,
for reason s of simplicity, the outer radius was given the value of 1.2 30 that the

_ _  -- _ _  ________--.•- ____
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radius of t he  smaller endcap arcs woul d be r .1 and thus the curvature there would
be exactly 10. Coord inat e stretches were specifi ed by set ting camber curve e~cten-
sion s of .5 in the upstream di rection and .7 in the downstream direction . The Inner
part of the camber curve was , for simpli city, gi ven as vertically averaged rl — it a

with a specification for a very accurate fit. Next , the periodic spacing of
a i r fo i ls  was  given a value of 3/14. The scaling of the coordinates should t~-ien be
roughly 3 units  across and 1 unit high . Consequ ently , on the  averag e absolut e errors
should be about twice as large as relative errors. The number of computational
m i- sb point s on the out er loop was set by choosing 20 periodic points above -and below
the airfoil  and 5 points on both the upstream and downstream endcaps. The radial

~irtribution was ~et for a boundary layer region to occupy one quarter of the
Iistar .ce from the airfoil to the outer loop and to be resolved with one half of
‘he m e- -h point s. For aesthetic reasons, 7 radial point s were chosen so that there
would he 5 i nn e ~’ coordi nat e loops . The computation time for the calculation war
sl~~~ht ly less than 30 seconds on a UN IVAC 1110 . Thi s compares favorably with other
me~iio-1i- of computation and is, in fact , faster than most . Since the purpose of the
pr ec --nt —~ud’,’ war to obtain an accurate constriction of cascade coordinate systems,
lit#l t~ cntion was actually paid to computational efficiency in terms of computer
t ime .  ~‘ons~~ uent ly, with a little effort the computer time could be decreased even
further. A graph of the results appears in Fig. 22. The airfoil  contour was fit
w i t h  a maximum absolute error of 14 x l0-~ in the location of points. The curvature
along the concentric arcs were generally accurat e to within two or three digit s
while the larger curvature regions on the leading ari d trailing edges were accurate
to wi th in  only one or two digits.  As expected the camber data was accurat ely fit
w i t h  a maximum absolut e error of 2 x 103 . A c - a result the linear dat a on the ends
of the circular caps caused the camber curve extensions to leave the airfoil as
straight lines parallel to the x-axis. The periodi c alignment for peri odically
matched points was generally accurate to three decimal places and in some places b~~
even greater accuracy. Certainly ouch excellent results cannot be Visl1ally discerned
f rom the  graph it self. However , it can be observed that the lines from the airfoil
to the outer loop are for all practical purposes normal to the airfoil and again
the result is in excellent agreem ent with the theory . Also the radial di stribution ,
as expected , properly di stributed the 5 inner loops.

ii 
_ _ _ _ _  
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FIGURE 4: SINGULARITY FROM INTERSECTING NORMALS
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FIGURE 5: DETERMINATION OF THE LOWER COORDINATE BOUNDARY
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FIGURE 6: A COORDINATE SYSTEM WHICH IS NEAR THE CENTER
OF AN OSCULATING SPHERE

INWARD VECTOR S ARE ASSIGNED AN INTEGER VALUE OF — 1
OUTWARD VECTORS ARE ASSIGNED AN INTEGER VALUE OF • 1

FIGURE 7. DISCRETE NORMAL VECTOR FIELD ALONG AIRF OIL SURFACE
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FIGURE 8: THE VERTICAL DISTANCE FROM THE BOTTOM OF THE AIRFOIL
TO THE CFNTERS OF THE OSCULATING SPHERES
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FIGURE 9: ARC LENGTH FUNCTION FOR EXTENSION IN FRONT
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A I R F O I L

CAMBER CURV E-.~ p-CAMBER CURVE
EXTENSION OF 

~Ji ~S.. I EXTENSION OF
F UNITS IN FR ONT~~

(
,~~~ ,~~~ E~E B UNITS IN BACK

I 
CURVE

I

~~~~~ ENDPOINTS OF VERTICALL Y
TRANSLATED CAMBER CURVE
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FIGURE 13: CUBIC Y—COORDINATE
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FIGURE 18: DISTRIBUTION FUNCTION FOR THE MESH ALONG THE NORMAL LINES
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FIGURE 19. INTRINSIC PARA METERS FOR THE CASCADE COORDINATE SYSTEM
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